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I. What is SEDA? 

The Stanford Education Data Archive (SEDA) is part of the Educational Opportunity 

Project at Stanford University (https:\\edopportunity.org), an initiative aimed at harnessing data 

to help scholars, policymakers, educators, and parents learn how to improve educational 

opportunities for all children. SEDA includes a range of detailed data on educational conditions, 

contexts, and outcomes in schools, school districts, counties, commuting zones, and 

metropolitan statistical areas across the United States. Available measures differ by aggregation; 

see Sections I.A. and I.B. for a complete list of files and data. 

By making the data files available to the public, we hope that anyone who is interested 

can obtain detailed information about U.S. schools, communities, and student success. We hope 

that researchers will use these data to generate evidence about what policies and contexts are 

most effective at increasing educational opportunity, and that such evidence will inform 

educational policy and practices. 

The construction of SEDA has been supported by grants from the Institute of Education 

Sciences, the Spencer Foundation, the William T. Grant Foundation, the Bill and Melinda Gates 

Foundation, the Overdeck Family Foundation, and by a visiting scholar fellowship from the 

Russell Sage Foundation. Some of the data used in constructing the SEDA files were provided by 

the National Center for Education Statistics (NCES). The findings and opinions expressed in the 

research and reported here are those of the authors alone; they do not represent the views of 

the U.S. Department of Education, NCES, or any of the aforementioned funding agencies. 

I.A. Overview of Test Score Data Files 

SEDA 3.0 contains test score data files for schools, geographic school districts (GSDs), 

counties, commuting zones (CZs), and metropolitan statistical areas (metros). Test score data 

files contain information about the average academic achievement as measured by standardized 

test scores administered in 3rd through 8th grade in mathematics and English/Language Arts (ELA) 

over the 2008-09 through 2015-16 school years. The exact measures reported differ by these 

levels of aggregation. 
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School Files. There are two school-level test score data files, corresponding to the two 

different metrics in which the data are released: the cohort standardized (CS) scale and the 

grade cohort standardized (GCS) scale. In each file there are variables corresponding to the 

average test score in the middle grade of the data, the average “learning rate” across grades 

(grade slope), the “trend” in the test scores across cohorts (cohort slope), and the difference 

between math and ELA (math slope). Each measure is included along with its respective standard 

error. Estimates are reported for all students; no estimates are provided by demographic 

subgroup. 

Geographic District, County, Commuting Zone, and Metropolitan Statistical Area Files. 

Twenty-four test score files are released corresponding to the four units (GSDs, counties, CZs, 

and metros) by two scales (CS and GCS) by three pooling levels (long, pooled by subject, and 

pooled overall). “Long” files contain estimates for each grade and year separately; “pooled by 

subject” (or poolsub) files contain estimates that are averaged across grades and years within 

subjects; and “pooled overall” (or pool) files contain estimates that are averaged across grades, 

years, and subjects. In the long files there are variables corresponding to test score means by 

subgroup and their respective standard errors in each grade, year and subject. In the two types 

of pooled files, there are variables corresponding to the average test score mean (averaged 

across grades, years, and subjects), the average “learning rate” across grades and the average 

“trend” in the test scores across cohorts, along with their standard errors. In the pooled overall 

file, there is also a variable that indicates the average difference between math and ELA and its 

standard error. Estimates are reported for all students and by demographic subgroups.  

Table 1 lists the files and file structures. Lists of variables can be found in the codebook 

that accompanies this documentation.  
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I.B. Covariate Data 

SEDA 3.0 also provides estimates of socioeconomic, demographic and segregation 

characteristics of schools, geographic school districts, counties and metros. The measures 

included in the district, county, and metro covariates files come primarily from two sources. The 

first is the American Community Survey (ACS) detailed tables which we obtained from the 

National Historical Geographic Information System (NHGIS) web portal.1 These data include 

demographic and socioeconomic characteristics of individuals and households residing in each 

unit. The second is the Common Core of Data (CCD) which is an annual survey of all public 

elementary and secondary schools and school districts in the United States. The data includes 

basic descriptive information on schools and school districts, including demographic 

characteristics. 2 The measures included in the school covariates file come from the CCD as well 

as the Civil Rights Data Collection (CRDC). The CRDC includes data about school demographics, 

teacher experience, school expenditures, high school course enrollments as well as other 

information not used here.3  

Nine files (three per aggregation) in SEDA 3.0 contain CCD and ACS that data have been 

curated for use with the geographic school district-level, county-level, and metro-level 

achievement data. These data include raw measures as well derived measures (e.g., a composite 

socioeconomic status measure, segregation measures). Each of the three covariate files we 

construct for each unit contain the same variables, but differ based on whether they report 

these variables separately for each grade and year, average across grades (providing a single 

value per unit per year) or average across grades and years (providing a single value per unit). A 

single data file is provided for schools with one observation for each school in each year. The 

Covariate Data Construction section of the documentation describes more detail about the 

construction of these data files and the computation of derived variables. Table 2 lists the names 

and file structures of the covariate data files. 

  

 
1 The ACS data is available for download from the NHGIS website at: https://www.nhgis.org/  
2 The CCD raw data can be accessed at https://nces.ed.gov/ccd/. 
3 More information about the Civil Rights Data Collection can be found here: https://ocrdata.ed.gov/  

https://www.nhgis.org/
https://nces.ed.gov/ccd/
https://ocrdata.ed.gov/
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I.C. Data Use Agreement 

 Prior to downloading the data, users must sign the data use agreement, shown below. 

 

You agree not to use the data sets for commercial advantage, or in the course of for-profit 

activities. Commercial entities wishing to use this Service should contact Stanford University’s 

Office of Technology Licensing (info@otlmail.stanford.edu). 

You agree that you will not use these data to identify or to otherwise infringe the privacy 

or confidentiality rights of individuals. 

THE DATA SETS ARE PROVIDED “AS IS” AND STANFORD MAKES NO REPRESENTATIONS 

AND EXTENDS NO WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED. STANFORD SHALL NOT BE 

LIABLE FOR ANY CLAIMS OR DAMAGES WITH RESPECT TO ANY LOSS OR OTHER CLAIM BY YOU OR 

ANY THIRD PARTY ON ACCOUNT OF, OR ARISING FROM THE USE OF THE DATA SETS. 

You agree that this Agreement and any dispute arising under it is governed by the laws of 

the State of California of the United States of America, applicable to agreements negotiated, 

executed, and performed within California. 

You agree to acknowledge the Stanford Education Data Archive as the source of these 

data. In publications, please cite the data as: 

 

Reardon, S. F., Ho, A. D., Shear, B. R., Fahle, E. M., Kalogrides, D., Jang, H., Chavez, B., 

Buontempo, J., & DiSalvo, R. (2019). Stanford Education Data Archive (Version 3.0). 

Retrieved from http://purl.stanford.edu/db586ns4974. 

 

Subject to your compliance with the terms and conditions set forth in this Agreement, 

Stanford grants you a revocable, non-exclusive, non-transferable right to access and make use of 

the Data Sets. 

mailto:info@otlmail.stanford.edu
http://purl.stanford.edu/db586ns4974
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II.  Achievement Data Construction 

II.A. Source Data  

 The SEDA 3.0 achievement data is constructed using data from the EDFacts data system 

housed by the U.S. Department of Education (USEd), which collects aggregated test score data 

from each state’s standardized testing program as required by federal law. The data include 

assessment outcomes for eight consecutive school years from the 2008-09 school year to the 

2015-16 school year in grades 3 to 8 in English Language Arts (ELA) and math.  

Under federal legislation, each state is required to test every student in grades 3 through 

8 (and in one high school grade) in math and ELA each year. States have the flexibility to select 

(or design) and administer a test of their choice that measures student achievement relative to 

the state’s standards. States then each set their own benchmarks or thresholds for the levels of 

performance or “proficiency” in each grade and subject. States are required to report the 

number of students scoring who are “proficient,” both overall and disaggregated by certain 

demographic subgroups, for each school. More often, states report the number of students 

scoring at each of a small number (usually 3-5) of ordered performance levels, where one or 

more levels represent “proficient” grade-level achievement.  

When states report this information to the USEd, it is compiled into the EDFacts 

database. The EDFacts database reports the number of students disaggregated by subgroup 

scoring in each of the ordered performance categories, for each grade, year and subject; no 

individual student-level data is reported. The student subgroups include race/ethnicity, gender, 

and socioeconomic disadvantage, among others. In 2013-2016, the data is further broken out by 

assessment type: regular assessments, regular assessments with accommodations, and alternate 

assessments with grade-level standards, modified standards and alternate standards. However, 

in 2009-2012, we cannot distinguish students taking regular from alternate assessments; these 

counts were combined in the reported data. Therefore, for consistency in all years, we use all 

performance data reported in EDFacts, including results of students taking both regular and 

alternate assessments. The raw data include no suppressed cells, nor do they have a minimum 

cell size for reporting.  
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Each row of data corresponds to a school-subgroup-subject-grade-year cell. The raw data 

include no suppressed cells, nor do they have a minimum cell size for reporting. Table 3 

illustrates the structure of the raw data from EDFacts prior to use in constructing SEDA 3.0.  
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II.B. Definitions 

Commuting Zone (CZ): Regions defined by the geographic boundaries of a local economy. We 

use the 2000 boundary definitions (https://www.ers.usda.gov/data-products/commuting-zones-

and-labor-market-areas/), which are the most recent commuting zone definitions. 

 

Geographic School District (GSD): The aggregate of all public schools, regardless of type and 

administrative control, residing in a geographic catchment area defined by a traditional public 

school district. GSDs allow linking of achievement data to demographic and economic 

information from EDGE/ACS, which is reported for students living in GSD boundaries regardless 

of where they attend school. 

 

Group: A subgroup-unit (as defined below). For schools, the only available subgroup is all 

students. For GSDs, counties, CZs, and MSAs, data for subgroups are available when estimates 

are sufficiently precise. 

 

Metropolitan Statistical Area (metro): A county or group of counties with a population exceeding 

50,000 and encompassing an urban area, combined with any surrounding counties with strong 

commuting ties to the urban area (https://www.census.gov/programs-surveys/metro-

micro/about/glossary.html). The U.S. Census Bureau revises the metropolitan statistical area 

definitions after each decennial census. We use the 2013 U.S. Census Bureau definitions, which 

are the definitions based on the 2010 census (https://www.census.gov/programs-

surveys/metro-micro/geographies/geographic-reference-files.2013.html). We make one 

modification to the definitions: The Census defines very large metropolitan areas as 

Consolidated Metropolitan Statistical Areas (CMSAS); each CMSA is subdivided into Metropolitan 

Area Divisions. We treat each Division as a separate metropolitan area for analysis purposes, as 

the CMSAs generally quite large. 

 

https://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas/
https://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas/
https://www.census.gov/programs-surveys/metro-micro/about/glossary.html
https://www.census.gov/programs-surveys/metro-micro/about/glossary.html
https://www.census.gov/programs-surveys/metro-micro/geographies/geographic-reference-files.2013.html
https://www.census.gov/programs-surveys/metro-micro/geographies/geographic-reference-files.2013.html


 
 

10 
 

Subgroup: The term “subgroup” refers to the group of students to which an estimate pertains. 

This may be: all, white, black, Hispanic, Asian, male, female, economically disadvantaged, or not 

economically disadvantaged students. 

 

Unit: The term “unit” refers to the aggregation of the data. This may be a school, GSD, county, 

CZ, or metro. 

 

II.C. Construction Overview 

The construction process produces mean test score estimates for schools, GSDs, 

counties, CZs and metros on two nationally comparable scales in a series of ten steps, outlined in 

Figure 1. We provide a brief conceptual description of each step here. We then provide 

substantial description and technical details about each step in Section II.D. 

 

Step 1: Creating the Crosswalk. This step assigns each public school district to a GSD and links 

each GSD uniquely to a county, CZ, and metro.  

 

Step 2: Data Cleaning. This step removes data for states and units in particular subjects, grades, 

and years for which we cannot produce any estimates. We also remove any identified errors in 

the raw data here. 

 

Step 3: Estimating and Linking Cutscores. This step uses Heteroskedastic Ordered Probit (HETOP) 

models to estimate the state-grade-subject-year cutscores from the GSD proficiency count data 

for all students. It links the estimated cutscores to the NAEP scale and then standardizes the 

linked cutscores to the Cohort Standardized (CS) scale. The resulting cutscores are comparable 

across states and years.  

 

Step 4: Exclude and Prepare Data. This step excludes data for unit-subgroup-subject-grade-year 

cases with low participation in the assessment or high percentages of students taking alternate 

assessments.  
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Step 5: Estimating School and District Means. This step uses the pooled HETOP model to 

estimate school and GSD subgroup-subject-grade-year means and standard deviations, along 

with their standard errors, based on the cutscores from Step 3 and the data prepared in Step 4.  

 

Step 6: Aggregating to County, CZ, and MSA Means. This step aggregates the GSD-subgroup 

estimates from Step 5 to counties, CZs, and metros. From this point onward, we have test score 

estimates for five units: schools, GSDs, counties, CZs, and metros. Subsequent steps are 

equivalent for all units unless otherwise noted. 

 

Step 7: Scaling Across Grades. This step creates grade cohort standardized (GCS) estimates for all 

units. From this point onward, we have two scales of the data for all units: CS and GCS. 

Subsequent steps are equivalent for both scales unless otherwise noted. 

 

Step 8: Calculating Achievement Gaps. This step estimates white-black, white-Hispanic, white-

Asian, male-female, and nonpoor-poor achievement gaps for GSDs, counties, CZs, and metros in 

each subject-grade-year where there is sufficient data.  

 

Step 9: Pooling Mean and Gap Estimates. This step estimates the average achievement, learning 

rate, and trend in test scores by subject and overall for each unit and scale. From this point 

onward, we have three levels of the data for all units: long (not pooled by grade, year, or 

subject), pooled by subject (poolsub), and pooled overall (pool).  

 

Step 10: Suppressing Data for Release. The step suppresses estimates that are too imprecise to 

be useful or do not reflect the performance of at least 20 unique students in both long and 

pooled files for all units and scales. For estimates reported in the long files, this step also adds a 

small amount of random noise to meet the reporting requirements of the US Department of 

Education. 
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II.D. Detailed Construction Overview 

Notation 

In the remainder of the documentation, we use the following mathematical notation: 

• Mean estimates are denoted by �̂� and standard deviation estimates by �̂�. 

• The cutscore estimates are denoted as �̂�1, … , �̂�𝐾. There are 𝐾 total cutscores in each 

state-subject-grade-year. 

• A subscript indicates the aggregation of the estimate. We use the following subscripts: 

𝑢 = unit (generic) 

𝑛 = school 

𝑑 = GSD  

𝑐 = county 

𝑧 = CZ 

𝑚 = metro 

𝑓 = state 

𝑟 = subgroup 

 𝑎𝑙𝑙 = all students 

𝑤ℎ𝑡 = white 

 𝑏𝑙𝑘 = black 

 ℎ𝑠𝑝 = Hispanic 

 𝑎𝑠𝑛 = Asian 

 𝑚𝑎𝑙 = male 

 𝑓𝑒𝑚 = female 

 𝑒𝑐𝑑 = economically disadvantaged 

 𝑛𝑒𝑐 = not economically disadvantaged 

 𝑤𝑏𝑔 = white-black gap 

 𝑤ℎ𝑔 = white-Hispanic gap 

 𝑚𝑓𝑔 = male-female gap 

𝑛𝑒𝑔 =not economically disadvantaged-economically disadvantaged gap 

𝑦 = year 

𝑏 = subject 

𝑔 = grade 

• A superscript indicates the scale of the estimate. The metric is generically designated as 

𝑥. There are four scales. The first two scales are only used in construction. The latter two 

scales are reported: 

 𝑠𝑡𝑎𝑡𝑒 = state-referenced metric 

 𝑛𝑎𝑒𝑝 = NAEP test score scale metric 

 𝑐𝑠 = cohort scale metric 

 𝑔𝑐𝑠 = grade within cohort scale metric  
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Step 1. Creating the Crosswalk & Defining Geographic School Districts 

The primary purpose of the crosswalk is to assign schools to GSDs. Each traditional public 

school district in the U.S. is defined by a geographic catchment area; the schools that fall within 

this geographic boundary make up the GSD. Commonly, public school districts have 

administrative control over the traditional public schools that fall within their specific geographic 

boundaries. However, there may be some schools physically located within the geographic 

boundary of a school district that are not under its administrative control. For example, there 

may be charter schools located within the boundaries of a traditional public school district that 

are operated by a charter school network (which has no associated geographic boundary). Any 

school that is not affiliated with one of the traditional public school districts is assigned to a GSD 

based on its geographic location; the assigned GSD will be the traditional public school district in 

whose geographic boundaries the school is physically located. The GSD, therefore, contains all of 

the public school students living within the geographic boundaries of the school district. The 

motivation for this assignment is to better align the test scores for students living within school 

district boundaries with the demographic and socioeconomic data that we retrieve from other 

sources that report data by geographic school district boundaries.  

Below are the GSD-assignment rules for common types of schools that are operated by a 

local education agency (LEA) without a straightforward geographic boundary.  

Charter schools: If a charter school is operated by an administrative district that only has 

charter schools or is authorized by a state-wide administrative agency, it is geolocated 

and assigned to a GSD based on its location.4 If a charter school is operated by a 

traditional public school district, we use that as its GSD regardless of the school’s 

location.   

Schools operated by high school districts: In the cases where schools in high school 

districts serve students in grades 7 and 8, the high schools are assigned to the 

elementary school district in which they are geographically located. 

 
4 Geographic location is determined by the latitude and longitude coordinates of a school’s physical address as listed 
in the CCD. The GSD of charter schools sometimes varies from year to year for approximately 5.45% of the roughly 
8,612 charter schools. In these cases, we use the GSD the charter is assigned to in the most recent year it is 
observed. 18 charter schools cannot be geolocated using the provided latitude/longitude information. All such 
schools are assigned to a single GSD with no geographic boundary. 



 
 

14 
 

Virtual schools: By their nature, most virtual schools do not draw students from within 

strict geographic boundaries. We therefore assign all the virtual schools within a state to 

a single “virtual school district”. We identify schools as virtual using CCD data from 2013-

14 through 2015-16 CCD data. The virtual school identifier did not exist in earlier years of 

data, so we flag schools as virtual in all years of our data if they are identified as virtual by 

the later year CCD indicators.5 Additionally, we identify virtual schools by searching 

school names for terms such as “virtual”, “cyber”, “online”, “internet”, “distance”, 

“extending”, “extended”, “on-line”, “digital” and “kaplan academy”. Since schools may 

change names, if we identify a school as virtual by this approach in one year, we flag the 

school as virtual in all years.6 Note that virtual schools are retained in the estimation of 

state cutscores, but no mean estimates are produced or reported in SEDA 3.0 for virtual 

schools or virtual school districts (these are removed from the data in Step 4).  

Schools belonging to GSDs that cross state boundaries: A few school districts overlap 

state borders. In this case, schools on either side of the state border take different 

accountability tests. We treat each of these districts as two GSDs, each one coded as part 

of the state in which it resides.  

 

The second purpose of the crosswalk is to identify a stable district ID for cases where 

school districts restructure or are reported differently in different data sets during the time 

period of our data. These cases are discussed below. 

Schools in districts that restructure: Some districts changed structure during the time 

period covered by SEDA 3.0 data. We have identified a small number of these cases. In 

California, two Santa Barbara districts (LEA IDs: 0635360, 0635370) joined to become the 

Santa Barbara Unified School District. In South Carolina, two districts joined to become 

the Sumter School District (LEA IDs: 4503720, 4503690). In Tennessee, Memphis Public 

 
5 In 2013-2015, we identified 12 non-virtual schools in Alabama identified as “virtual” by the CCD indicator. We treat 
these as regular schools in all subsequent steps. 
6 Some naming or classification of schools was ambiguous. When the type of school was unclear, research staff 
consulted school and district websites for additional details. Schools whose primary mode of instruction was online 
but that required regular attendance at a computer lab or school building were coded as belonging to the GSD in 
which they are located. 
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Schools and Shelby County Public Schools (LEA IDs: 4702940, 4703810) merged. In Texas, 

North Forest ISD merged with Houston ISD (LEA IDs: 4833060, 482364). For all cases, 

SEDA 3.0 contains estimated test score distributions for the combined GSDs.  

Schools in New York City: The CCD assigns schools in New York City to one of thirty-two 

districts or one “special schools district.” We aggregate all New York City Schools to the 

city level and give them all the same GSD code, creating one unified New York City GSD 

code.  

 

Finally, the crosswalk links the GSD estimates to counties, CZs, and metros. No additional 

geolocation is done in support of this aspect of the crosswalk. GSDs are assigned to counties, 

metros, and CZs based on the county codes provided in CCD. A small number of counties 

restructure during the time frame of our data, meaning that we observe some districts belonging 

to two different counties over the course of our data. To avoid this issue, we create a stable ID 

for this county that is equivalent to the county definition in the most recent year of data. 

Districts are always assigned to this stable county ID, regardless of the year of the data. We use 

the 2013 metropolitan statistical area definitions. 

The crosswalk and the shape files used to locate schools within each geographic unit are 

available in the SEDA database. The county, metro, and CZ shape files are original from the US 

Census Bureau. A district level shape file was created using the U.S. Census Bureau’s 2010 

TIGER/Line Files. These files were from the National Historical Geographic Information System 

(NHGIS). The Census Bureau provides three shape files: elementary district boundaries, high 

school district boundaries, and unified district boundaries. Research staff merged the elementary 

and unified shape files to conform to the decision rules outlined above.  Note that in the data 

repository the shape files are labeled as “v21”. No updates were made to these files in this 

release; their version number was not edited. 
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Step 2. Data Cleaning 

In this step, we first merge the EDFacts data (described under II.A. Source Data, above) 

by NCES school ID and year with the crosswalk developed in Step 1. This merge provides us with 

counts of students scoring in each proficiency category by school-subgroup-subject-grade-year 

that is linked to GSDs, counties, CZs, and metros. As noted above, in 2008-09 through 2011-12, 

we cannot distinguish students taking regular from alternate assessments; these counts were 

combined in the reported data. Therefore, for consistency in all years, we combine the 

performance data for regular and alternate assessments as reported in EDFacts. Notably, in a 

small number of cases that the state’s alternate assessments have one additional performance 

category relative to the regular assessment.7 Because our estimation uses combined counts of 

students scoring in each performance category across all assessments, this leads to the bottom 

or top proficiency category of the data having a very small number of observations. To avoid 

issues during estimation, we collapse the sparse bottom or top category with the adjacent 

category in these state-subject-grade-year cases. The affected state, subject, grade, and year 

cases include: Arkansas, math and ELA, grades 3-8, years 2012, 2013, 2014 and 2016; Colorado, 

math and ELA, grades 3-8, years 2012, 2013, and 2014; Iowa, math and ELA, grades 3 through 8, 

years 2015 and 2016; New York, math, grades 3-6, years 2013 and 2014; Oregon, math and ELA, 

grades 3-8 in 2013 and 2014; and South Carolina, math and ELA, grades 3-8, years 2012, 2013, 

and 2014. 

Next, we remove all data8 for state-subject-grade-year cases that do not meet the 

requirements of our estimation. A general description of these cases follows, and a list of specific 

cases can be found in Table 4: 

Students took incomparable tests within the state-subject-grade-year: There are two 

common ways this appears within the data. First, there are cases where districts were 

permitted to administer locally selected assessments. This occurred in Nebraska during 

SY 2008-2009 (ELA and Math) and SY 2009-2010 (Math). Second, students take end-of-

 
7 The EDFacts documentation notes these discrepancies in years after 2011-12. 
8 For all subgroups and all schools in the state. In other words, no estimates will be available for these state-subject-
grade-year cases. 
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course rather than end-of-grade assessments. This is the case in some or all years for 7th 

and 8th grade math for California, Virginia and Texas (among other states, reported in 

Table 5). The problem is that assessments were scored on different scales and using 

different cut scores. Therefore, proficiency counts cannot be compared across districts or 

schools within these state-subject-grade-year cases.  

The state had participation lower than 95% in the tested subject-grade-year: Using the 

EDFacts data, we are able to estimate a participation rate for all state-subject-grade-year 

cases in the 2012-13 through 2014-15 school years. This participation data file is not 

available prior to the 2012-13 school year, and therefore we cannot calculate 

participation rates prior to 2012-13. Participation is the ratio of the number of test scores 

reported to the number enrolled students in a given state-subject-grade-year: 

 𝑝𝑎𝑟�̂�𝑓𝑦𝑔𝑏 =
𝑛𝑢𝑚𝑠𝑐𝑜𝑟𝑒𝑠𝑓𝑦𝑔𝑏

𝑛𝑢𝑚𝑒𝑛𝑟𝑙𝑓𝑦𝑔𝑏
 (2.1) 

for each state 𝑓, year 𝑦, grade 𝑔, and subject 𝑏. 

This state-level suppression is important because both the quality of the estimates and 

the linkage process depends on having the population of student test scores for that 

state-subject-grade-year. State participation may be low due to a number of factors, 

including student opt out or pilot testing. Note that we do not suppress any entire state-

subject-grade-year cases prior to the 2012-13 school year as enrollment data are not 

available in EDFacts. However, opt out was low in 2012-13 (no state was excluded based 

on this threshold), which suggests states met 95% threshold in prior years when data are 

not available. 

Insufficient data was reported to EDFacts: Some states reported no data in certain years: 

Wyoming did not report any assessment outcomes in 2009-10. Others reported data 

from which we cannot recover reliable estimates. In the 2008-09, 2009-10, and 2010-11 

school years, Colorado reported data in only two proficiency categories, and a large 

majority of the data (88% across subjects, grades, and years) fall into a single category. 

These data do not provide sufficient information to estimate means and/or standard 

deviations in most regions. In the 2014-15 and 2015-16 school years, New Mexico 
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reported data in on two proficiency categories. We remove these cases because the two 

years are consecutive and fall at the end of the time series of our data.  

 

In addition to the exclusion of state-subject-grade-year cases, we also remove 

idiosyncratic data errors. These were identified by looking at the distribution of students across 

proficiency categories. When the distribution changed too abruptly for the given cohort in the 

given year compared with their performance in the prior and subsequent years, as well as 

compared with other cohorts in the GSD, these data were determined to be entry errors and 

were removed. These cases are listed in Table 5. 
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Step 3. Cutscore Estimation and Linking 

In this step, we use HETOP models and the all-student GSD proficiency count data to 

estimate state-subject-grade-year cutscores on a common scale linked to NAEP. To address 

practical challenges that can arise in linking and the HETOP estimation framework, within a 

specific state-subject-grade-year we:  

Rearrange GSDs. We reconfigure GSDs that meet certain criteria within a state-subject-

grade-year in order to improve the HETOP estimation process. First, we combine vectors 

of counts that have fewer than 20 students into “overflow” groups because estimates 

based on small sample sizes can be inaccurate. Second, in some vectors with more than 

20 students the pattern of counts does not provide enough information to estimate a 

mean or a standard deviation; we also place these count vectors into the “overflow” 

group. If the resulting overflow groups have parameters that cannot be estimated via 

maximum likelihood, they are removed from the data. This reconfiguration allows us to 

retain the maximum possible number of test scores in the estimation sample for the 

cutscores. This is important as the linking methods we use later in this step rely on having 

information about the full population in each state-grade-year-subject. 

Constrain GSDs. For groups not in the “overflow” group, we always estimate a unique 

mean. But we can sometimes obtain more precise and identifiable estimates by placing 

additional constraints on group standard deviation parameters in the HETOP model. We 

constrain standard deviation parameter estimates for groups that meet the following 

conditions during estimation: 

• There are fewer than 50 student assessment outcomes in a GSD. 

• There are not sufficient data to estimate both a mean and standard deviation (all 

student assessment outcomes fall in only two adjacent performance level 

categories; all student assessment outcomes fall in the top and bottom 

performance categories; or all student assessment outcomes fall in a single 

performance level category).    

After these data processing steps, we estimate a separate HETOP model for each state-

subject-grade-year and save the cutscore estimates. For state-grade-year-subjects with only two 
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proficiency categories, we cannot estimate unique GSD standard deviations and instead we use 

the model with a single, fixed standard deviation parameter (the HOMOP model). We denote the 

estimated cutscores as 𝑐1̂𝑓𝑦𝑔𝑏
𝑠𝑡𝑎𝑡𝑒, … , 𝑐𝐾−1̂𝑓𝑦𝑔𝑏

𝑠𝑡𝑎𝑡𝑒, for a state 𝑓, year 𝑦, grade 𝑔, and subject 𝑏, where 

the proficiency data are reported in 𝐾 categories. These cutscores are expressed in units of their 

respective state-year-grade-subject student-level standardized distribution. The HETOP model 

estimation procedure also provides standard errors of these cutscore estimates, denoted 

𝑠𝑒 (𝑐�̂�𝑓𝑦𝑔𝑏
𝑠𝑡𝑎𝑡𝑒)  𝑓𝑜𝑟 𝑘 = 1, . . , 𝐾 − 1, respectively (Reardon, Shear, Castellano, & Ho, 2017). Note 

that we do not use the group-specific means or standard deviations that are simultaneously 

estimated along with the cutscores; mean estimation is described in Steps 5 and 6.  See Reardon 

et al. (2017) and the description in Step 5 below for additional details about the HETOP model. 

To place these cutscores on a common scale across states, grades, and years we use data 

from the National Assessment of Educational Progress (NAEP). NAEP data provide estimates of 

4th and 8th grade test score means and standard deviations for each state on a common scale, 

denoted �̂�𝑓𝑦𝑔𝑏
𝑛𝑎𝑒𝑝 and �̂�𝑓𝑦𝑔𝑏

𝑛𝑎𝑒𝑝, respectively, as well as their standard errors.9 Because NAEP is 

administered only in 4th and 8th grades in odd-numbered years, we interpolate and extrapolate 

linearly to obtain estimates of these parameters for grades (3, 5, 6, and 7) and years (2010, 

2012, 2014, and 2016) in which NAEP was not administered. First, within each NAEP-tested year 

(2009, 2011, 2013, 2015, and 2017) we linearly interpolate between grades 4 and 8 to grades 5, 

6, and 7 and extrapolate to grade 3. Next, for all grades 3-8, we linearly interpolate between the 

odd NAEP-tested years to estimate parameters in 2010, 2012, 2014 and 2016, using the 

interpolation/extrapolation formulas here: 

 
�̂�𝑓𝑦𝑔𝑏

𝑛𝑎𝑒𝑝
= �̂�𝑓𝑦4𝑏

𝑛𝑎𝑒𝑝
+

𝑔 − 4

4
(�̂�𝑓𝑦8𝑏

𝑛𝑎𝑒𝑝
− �̂�𝑓𝑦4𝑏

𝑛𝑎𝑒𝑝),     for g ∈ {3, 5, 6, 7} 

�̂�𝑓𝑦𝑔𝑏
𝑛𝑎𝑒𝑝 =

1

2
(�̂�𝑓[𝑦−1]𝑔𝑏

𝑛𝑎𝑒𝑝 + �̂�𝑓[𝑦+1]𝑔𝑏
𝑛𝑎𝑒𝑝 ) ,     for y ∈ {2010, 2012, 2014, 2016} 

(3.1) 

 
9 Note that the NAEP scales are not comparable across math and reading, but they are comparable across states, 
grades and years within each subject. 
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We do the same to interpolate/extrapolate the state NAEP standard deviations. The 

reported NAEP means and standard deviations, along with interpolated values, by year and 

grade, are reported in Table 6.   

We then use these state-specific NAEP estimates to place each state’s cutscores on the 

NAEP scale. The methods we use—as well as a set of empirical analyses demonstrating the 

validity of this approach—are described in more detail by Reardon, Kalogrides, and Ho 

(Forthcoming). We provide a brief summary here. Because GSD test score moments and the 

cutscores are expressed on a state scale with mean 0 and unit variance, the estimated mapping 

of 𝑐�̂�𝑓𝑦𝑔𝑏
𝑠𝑡𝑎𝑡𝑒𝑓𝑜𝑟 𝑘 = 1, … ,𝐾 − 1 to the NAEP scale is given by Equation (3.2) below, where �̂�𝑓𝑦𝑔𝑏

state is 

the estimated reliability of the state test. This mapping yields an estimate of the 𝑘𝑡ℎ cutscore on 

the NAEP scale; denoted 𝑐�̂�𝑓𝑦𝑔𝑏
𝑛𝑎𝑒𝑝.  

 𝑐�̂�𝑓𝑦𝑔𝑏
𝑛𝑎𝑒𝑝 = �̂�𝑓𝑦𝑔𝑏

𝑛𝑎𝑒𝑝 +
𝑐�̂�𝑓𝑦𝑔𝑏

𝑠𝑡𝑎𝑡𝑒

√�̂�𝑓𝑦𝑔𝑏
𝑠𝑡𝑎𝑡𝑒

∙ �̂�𝑓𝑦𝑔𝑏
𝑛𝑎𝑒𝑝 (3.2) 

The intuition behind Equation (3.2) is straightforward: cutscores in states with relatively 

high NAEP averages should be placed higher on the NAEP scale. The reliability term, �̂�𝑓𝑦𝑔𝑏
state, in 

Equation (3.2) is necessary to account for measurement error in state accountability test scores. 

Note that cutscores on the state scale are expressed in terms of standard deviation units of the 

state score distribution. The state scale cutscores are biased toward zero due to measurement 

error. They must be disattenuated during mapping to the NAEP scale, given that the NAEP scale 

accounts for measurement error due to item sampling. We disattenuate the means by dividing 

them by the square root of the state test score reliability estimate, �̂�𝑓𝑦𝑔𝑏
state. The reliability data 

used to disattenuate the estimates come from Reardon and Ho (2015) and were supplemented 

with publicly available information from state technical reports. For cases where no information 

was available, test reliabilities were imputed using data from other grades and years in the same 

state.  

 Finally, we standardize the NAEP-linked cutscores relative to a reference cohort of 

students. This standardization is accomplished by subtracting the national grade-subject-specific 

mean and dividing by the national grade-subject-specific standard deviation for a reference 
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cohort. We use the average of the three national cohorts that were in 4th grade in 2009, 2011, 

and 2013. We rescale at this step such that all means recovered in Step 5 will be interpretable as 

an effect size relative to the average of the three national cohorts that were in 4th grade in 2009, 

2011, and 2013. 

For each grade, year and subject we calculate: 

 

�̂�𝑎𝑣𝑔,𝑔𝑏
𝑛𝑎𝑒𝑝 = ∑

1

3
𝜇(𝑦=𝑌+𝑔)𝑔𝑏

𝑛𝑎𝑒𝑝

𝑌∈{2005,2007,2009}

 

�̂�𝑎𝑣𝑔,𝑔𝑏
𝑛𝑎𝑒𝑝 = ∑

1

3
𝜎(𝑦=𝑌+𝑔)𝑔𝑏

𝑛𝑎𝑒𝑝

𝑌∈{2005,2007,2009}

  

 

(3.3) 

In Equation (3.3), 𝑌 refers to the year in which the cohort was in the spring of kindergarten. For 

the 2009 4th grade cohort, this is equal to 2005 (or 2009 minus 4). 

Then we standardize each cutscore: 

 𝑐�̂�𝑓𝑦𝑔𝑏
𝑐𝑠 =

𝑐�̂�𝑓𝑦𝑔𝑏
𝑛𝑎𝑒𝑝 − �̂�𝑎𝑣𝑔,𝑔𝑏

𝑛𝑎𝑒𝑝

�̂�𝑎𝑣𝑔,𝑔𝑏
𝑛𝑎𝑒𝑝  

 

(3.4) 

The resulting cutscores are on the CS scale, standardized to this nationally averaged reference 

cohort within subject, grade, and year. 
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Step 4. Selecting Data for Mean Estimation 

In Step 5, we estimate a model separately for each unit-subgroup that draws only on the 

subject-grade-year data for that unit-subgroup. In some subjects, grades, and years, we are less 

confident in the quality of the unit-subgroup data and do not want leverage it in estimation as it 

may bias the parameter estimates.10 These cases are described below: 

The participation rate is less than 95%. In these cases, the population of tested students 

on which the mean and standard deviation estimates are based may not be 

representative of the population of students in that school).  Therefore, we remove all 

unit-subgroup-subject-grade-year cases where participation was lower than 95%. 

Participation is defined as: 

 𝑝𝑎𝑟�̂�𝑢𝑟𝑦𝑔𝑏 =
𝑛𝑢𝑚𝑠𝑐𝑜𝑟𝑒𝑠𝑢𝑟𝑦𝑔𝑏

𝑛𝑢𝑚𝑒𝑛𝑟𝑙𝑢𝑟𝑦𝑔𝑏
. (4.1) 

This measure can be constructed in the 2012-13 through 2015-16 school years; we do 

not remove data based on this rule in earlier years. If the participation rate for “all 

students” is less than 95%, we do not report any estimates for demographic subgroups 

regardless of whether the subgroup-specific participation rate was greater than 95% 

because we are concerned about data quality.   

Insufficient data reported by student demographic subgroups. There are a small number 

of cases where the total number of test scores reported by race or gender is less than 

95% of the total reported test scores for all students. For example, there may be 50 test 

scores reported for all students, but only 20 test scores for male students and 20 test 

scores for female students. In this case, we would not report the male or female test 

score means because insufficient test scores were reported by gender. We calculate the 

reported percentage as: 

 
10 This logic of this data selection differs from the cleaning done in Step 2 to support cutscore estimation. For the 
cutscore estimation, we wanted to keep as much data as possible in the estimation process because the linking 
procedure at the end of the Step 3 requires population-based data. Moreover, the cutscore are not particularly 
sensitive to low-quality data for individual GSDs. In contrast, the school/GSD estimates will be strongly affected by 
low quality data (due to the factors described above). First, those parameters may not accurate reflect the academic 
performance in the unit. Second, in the model that we use (described more below), we “borrow” information across 
grades and years in some cases. If we include these low-quality data cases, we may be borrowing from “bad” 
information. 
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 𝑟𝑒�̂�𝑢𝑟𝑦𝑔𝑏 =
∑ 𝑛𝑢𝑚𝑠𝑐𝑜𝑟𝑒𝑠𝑢𝑟𝑦𝑔𝑏𝑟

𝑛𝑢𝑚𝑠𝑐𝑜𝑟𝑒𝑠𝑢,𝑎𝑙𝑙,𝑦𝑔𝑏
. (4.2) 

This measure can be constructed in all years.  

More than 40% of students take alternate assessments.  We are concerned that we are 

getting a biased estimate in unit-subgroup-subject-grade-year cases where over 40% of 

the students take alternate assessments. These assessments typically differ from the 

regular assessment and have different proficiency thresholds. This flag can be 

constructed in the 2012-13 through 2015-16 school years; we do not remove data based 

on this rule in earlier years. 

Students scored only in the top or only in the bottom proficiency category. We cannot 

obtain maximum likelihood estimates of unique means for these cases and therefore 

remove them prior to estimation. This flag can be constructed in every year. 

 

We next flag and remove schools-subgroups and GSD-subgroups that do not meet the 

minimum estimation requirements, described below. First, we create a “type flag” for each unit-

subgroup-subject-grade-year case. It is considered “deficient” if the case meets one of the 

following conditions: a) has all observations in a single category; b) has all observations in only 2 

adjacent categories; c) has only 2 proficiency categories (one cut score); or, d) has all 

observations in only the top and bottom categories (e.g., X-0-0-X or X-0-X). Otherwise, cases are 

flagged as “sufficient”. Constraints on the parameter estimates for “deficient” cases are needed 

during estimation because they do not provide sufficient data to freely estimate both a mean 

and a standard deviation. Second, we construct a “size flag.” We flag unit-subgroup-subject-

grade-year cases as “small” if they have fewer than 100 test scores; otherwise, cases are flagged 

as “large”. Each unit-subgroup-subject-grade-year, then, has two associated flags. These flags 

will be used again during estimation to place constraints on the standard deviation estimates for 

individual unit-subgroup-subject-grade-year cases. If a unit-subgroup has only one “deficient” or 

“small” unit-subgroup-subject-grade-year case, then that case is dropped from the data. We also 

drop entire unit-subgroups that have no “sufficient” unit-subgroup-subject-grade-year cases. 
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Our estimation methods, described in the next step, cannot produce a standard deviation 

estimate when all subject-grade-year cases for a given unit when these conditions are met. 

Finally, we select not to perform the mean estimation for a subset of whole schools and 

GSDs (across all subgroups, subjects, grades and years). These include: (1) virtual schools and 

GSDs (described in Step 2); (2) charter schools that could not be geolocated; and (3) schools and 

GSDs with more than 20% of all students taking alternate assessments. Note that while we 

technically perform this data selection only for schools and GSDs in this Step, we apply a subset 

of these rules to counties, CZs, and metros during the aggregation process. Table 7 shows the 

cases that are excluded based on these rules for all geographies. 
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Step 5. Estimating Means for Schools and Districts  

The goal of this step is to estimate the mean and standard deviation of test scores for 

each subgroup in each unit (school or district) across subjects, grades, and years. We have two 

pieces of information that we use for this process: the observed proficiency counts for each 

subgroup-unit-state-grade-year-subject from Step 4 and the estimated cutscores separating the 

proficiency categories in the associated state-grade-year-subject from Step 3. We use these data 

and a pooled HETOP model (Shear and Reardon, 2019; Reardon et al., 2017) to estimate 𝜇𝑢𝑟𝑦𝑔𝑏
𝑐𝑠  

and 𝜎𝑢𝑟𝑦𝑔𝑏
𝑐𝑠 , the mean and standard deviation of achievement on the CS scale for unit 𝑢 (school 

or GSD), subgroup 𝑟, year 𝑦, grade 𝑔, and subject 𝑏. As described below, the pooled HETOP 

model is run separately for each unit-subgroup-subject, but combines data across grades and 

years when estimating these parameters. Combining data across grades and years allows us to 

get better estimates of 𝜎𝑢𝑟𝑦𝑔𝑏
𝑐𝑠  for years and grades in which sample sizes are small or where the 

proficiency count data are limited. 

We use a pooled HETOP model in order to overcome three practical challenges. The 

challenges are: 1) in some states, years, and grades, 𝐾 = 2 and there is not sufficient 

information to estimate both a mean and a standard deviation for each unit-subgroup-grade-

year-subject; 2) if 𝐾 ≥ 3 but there are sampling zeros because test scores were not observed in 

all 𝐾 categories for a particular grade and year, there may not be sufficient information to 

estimate both a mean and a standard deviation; and 3) when the sample size 𝑛𝑘𝑢𝑟𝑦𝑔𝑏 is small, 

prior simulations (e.g., Reardon et al., 2017; Shear & Reardon, 2019) have shown that estimates 

of standard deviations can be biased and contain excessive sampling error. 

 We estimate a pooled HETOP model (Shear & Reardon, 2019) for each unit, separately 

for each subject and subgroup, by “pooling” data across all available grades and years, and 

maximizing the joint log likelihood function given by: 
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𝐿 = ln[𝑃(𝐍𝑢𝑟𝑏|𝐌𝑢𝑟𝑏
𝑐𝑠 , 𝐇𝑢𝑟𝑏

𝑐𝑠 , 𝐂𝑓𝑏
𝑐𝑠)] = ∑ ∑ ∑ 𝑛𝑘𝑢𝑟𝑦𝑔𝑏 ln(𝜋𝑘𝑢𝑟𝑦𝑔𝑏)

𝐾

𝑘=1

𝐺

𝑔=1

𝑌

𝑦=1

= ∑ ∑ ∑ 𝑛𝑘𝑢𝑟𝑦𝑔𝑏

𝐾𝑔𝑦

𝑘=1

𝐺

𝑔=1

𝑌

𝑦=1

ln (Φ(
𝜇𝑢𝑟𝑦𝑔𝑏

𝑐𝑠 − 𝑐𝑘−1𝑓𝑦𝑔𝑏

𝑐𝑠

exp(ℎ𝑢𝑟𝑏(𝑔, 𝑦))
) − Φ (

𝜇𝑢𝑟𝑦𝑔𝑏
𝑐𝑠 − 𝑐𝑘𝑓𝑦𝑔𝑏

𝑐𝑠

exp(ℎ𝑢𝑟𝑏(𝑔, 𝑦))
)), 

 

where 𝐍𝑢𝑟𝑏 is a matrix of proficiency counts across all available grades (𝐺) and years (𝑌) for unit 

𝑢, subgroup 𝑟 and subject 𝑏, 𝐌𝑢𝑟𝑏
𝑐𝑠  is a vector of estimated means across grades and years, 𝐇𝑢𝑟𝑏

𝑐𝑠  

is a vector of estimated parameters for the function ℎ( ) described below, and 𝐂𝑓𝑏
𝑐𝑠  is a matrix 

of cutscores across grades and years. The cutscores are treated as fixed here, using the values 

estimated in Step 3. We have replaced 𝜎𝑢𝑟𝑦𝑔𝑏
𝑐𝑠  in the above equation with exp(ℎ𝑢𝑟𝑏(𝑔, 𝑦)), 

where ℎ𝑢𝑟𝑏(𝑔, 𝑦) is a unit-specific function used to model the natural log of the standard 

deviations as a function of grade and year: 

ℎ𝑢𝑟𝑏(𝑔, 𝑦) = ln(𝜎𝑢𝑟𝑦𝑔𝑏
𝑐𝑠 ) = 𝛾𝑢𝑟𝑦𝑔𝑏

𝑐𝑠 . 

We do this for two reasons. First, estimating 𝛾𝑢𝑟𝑦𝑔𝑏
𝑐𝑠 = ln(𝜎𝑢𝑟𝑦𝑔𝑏

𝑐𝑠 ) rather than 𝜎𝑢𝑟𝑦𝑔𝑏
𝑐𝑠  directly 

ensures that the ML estimate will be positive. Second, defining 𝛾𝑢𝑟𝑦𝑔𝑏
𝑐𝑠  as a function of grade and 

year, rather than allowing this value to be unique in each grade and year, defines the pooled 

HETOP model. If we place no constraints on the model and allow ℎ𝑢𝑟𝑏(𝑔, 𝑦) = 𝛾𝑢𝑟𝑏𝑔𝑦 to take on 

a unique value in each grade and year, maximization of this likelihood will result in identical 

estimates to those obtained by maximizing the likelihood separately for each grade and year. 

To leverage the data available across multiple grades and years and overcome the 

limitations noted above, we define ℎ𝑢𝑟𝑏(𝑔, 𝑦) in the following way. First, we allow 𝛾𝑢𝑟𝑦𝑔𝑏 to be 

freely estimated in each grade-year cell that is both “sufficient” and “large”, by the flags defined 

above. For all other grade-year cells, we constrain ℎ𝑢𝑟𝑏(𝑔, 𝑦) such that the estimate of 𝛾𝑢𝑟𝑦𝑔𝑏 is 

equal to the mean of the �̂�𝑢𝑟𝑦𝑔𝑏 estimates across the freely estimated cells. That is, we estimate 

a common “pooled” standard deviation across the grades and years in which there are 

“deficient” data and/or “small” cell sizes. 

More formally, for all years and grades in which 𝑛𝑢𝑟𝑦𝑔𝑏 < 100 and/or in which there are 

insufficient data to estimate both a mean and a standard deviation, we constrain ℎ𝑢𝑟𝑏(𝑔, 𝑦) =
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𝛾𝑢𝑟𝑏
𝑐𝑠  to be equal, while allowing ℎ𝑢𝑟𝑏(𝑔, 𝑦) = 𝛾𝑢𝑟𝑦𝑔𝑏

𝑐𝑠  to be freely estimated in grades and years 

with at least 100 test scores and sufficient data to estimate both a mean and standard deviation. 

We further constrain the model such that the “pooled” log standard deviation is equal to the 

(unweighted) mean of the unconstrained log standard deviations by defining the constraint: 

𝛾𝑢𝑟𝑏
𝑐𝑠 =

∑ ∑ (𝐼𝑢𝑟𝑦𝑔𝑏
100 ∙ 𝐼𝑢𝑟𝑦𝑔𝑏

𝑆 ∙ 𝛾𝑢𝑟𝑦𝑔𝑏
𝑐𝑠 )𝑌

𝑦=1  𝐺
𝑔=1

∑ ∑ (𝐼𝑢𝑟𝑦𝑔𝑏
100 ∙ 𝐼𝑢𝑟𝑦𝑔𝑏

𝑆 )𝑌
𝑦=1

𝐺
𝑔=1

, 

where 𝐼𝑢𝑟𝑦𝑔𝑏
100  is the size indicator flag (equal to 1 if size is “large”) and 𝐼𝑢𝑟𝑦𝑔𝑏

𝑆 is the sufficient data 

indicator flag (equal to 1 if there are sufficient data). If 𝐼𝑢𝑟𝑦𝑔𝑏
100  and 𝐼𝑢𝑟𝑦𝑔𝑏

𝑆  are equal to 1 for all 

cells in a unit, then we estimate a unique mean and standard deviation for each cell. For all other 

units, there will be a mix of freely estimated and constrained standard deviation parameters. 

Recall in Step 4 that we removed unit-subgroups where 𝐼𝑢𝑟𝑦𝑔𝑏
𝑆 = 0 for all cells because we are 

unable to estimate a standard deviation parameter. 

  

Summary 

The models described here are used to produce ML estimates of 𝜇𝑢𝑟𝑦𝑔𝑏
𝑐𝑠  and 𝜎𝑢𝑟𝑦𝑔𝑏

𝑐𝑠  

(where �̂�𝑢𝑟𝑦𝑔𝑏
𝑐𝑠  may be constrained to be equal in some grades and years), as well as estimated 

standard errors 𝑠𝑒(�̂�𝑢𝑟𝑦𝑔𝑏
𝑐𝑠 ) and 𝑠𝑒(�̂�𝑢𝑟𝑦𝑔𝑏

𝑐𝑠 ) and the estimated sampling covariances 

𝑐𝑜𝑣(�̂�𝑢𝑟𝑦𝑔𝑏
𝑐𝑠 , �̂�𝑢𝑟𝑦𝑔𝑏

𝑐𝑠 ), where unit can be either a GSD 𝑑, or a school 𝑛. This process is applied 

separately for each district-subgroup-subject or school-subgroup-subject within each state. The 

estimates are on the CS scale described elsewhere, and can be transformed to other scales, such 

as the GCS scale. 
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Step 6. Aggregating GSD-subgroup estimates to Counties, CZs and Metros  

We adopt a different approach to estimate the mean and standard deviation of achievement 

in counties, CZs and MSAs in a given year 𝑦, grade 𝑔, and subject 𝑏. We use the estimates for the 

GSDs from Step 5 that correspond to a given county, CZ or metro within a subject-grade-year to 

estimate an overall mean and variance for that unit. As noted above, we use stable county 

identifiers in cases where we observe that a district is placed in multiple counties during the 

years in our sample. The district is assigned to the county it is observed in during the 2015-16 

school year (the last year of our data). 

 We describe the process here for counties, but it also applies to CZs and MSAs. Suppose 

there are a set of 𝐶 counties, each of which contains one or more unique GSDs. These higher-

level units are defined geographically and are non-overlapping. Hence, each GSD falls within 

exactly one county. The county mean is estimated as the weighted average of GSD means across 

all 𝐷𝑐 GSDs in county 𝑐, computed as 

 �̂�𝑐𝑟𝑦𝑔𝑏
𝑐𝑠 = ∑ 𝑝𝑑𝑐�̂�𝑑𝑟𝑦𝑔𝑏

𝑐𝑠

𝐷𝑐

𝑑=1

, (6.1) 

where 𝑝𝑑𝑐  is the proportion of county 𝑐 represented by GSD 𝑑. The estimated county standard 

deviation is estimated as the square root of the estimated total variance between and within 

GSDs within a county, 

 �̂�𝑐𝑟𝑦𝑔𝑏
𝑐𝑠 = √�̂�𝐵𝑐

2 + �̂�𝑊𝑐

2  (6.2) 

where �̂�𝐵𝑐

2  is the estimated variance between GSDs in county 𝑐 and �̂�𝑊𝑐

2  is the estimated variance 

within GSDs in county 𝑐. The formulas used to estimate �̂�𝐵𝑐

2  and �̂�𝑊𝑐

2  are based on equations in 

Reardon et al. (2017). These formulas and formulas for estimating the standard errors of the 

county means and standard deviations, �̂�𝑐𝑟𝑦𝑔𝑏
𝑐𝑠  and �̂�𝑐𝑟𝑦𝑔𝑏

𝑐𝑠 , are included in Appendix A1. 
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Step 7. Scaling the Estimates 

As described in Step 3, we standardize the cutscores prior to estimation such that all 

mean estimates are produced on the CS scale. In the step, we establish a second scale: The 

Grade Cohort Standardized (GCS) scale. We recommend CS-scaled estimates for research 

purposes and the GCS scale for low-stakes reporting to non-research audiences. 

Recall that the CS scale is standardized within subject and grade, relative to the average 

of the three cohorts in our data who were in 4th grade in 2009, 2011 and 2013. We use the 

average of three cohorts as our reference group because they provide a stable baseline for 

comparison. This metric is interpretable as an effect size, relative to the grade-specific standard 

deviation of student-level scores in this common, average cohort. For example, a GSD with a 

mean of 0.5 on the CS scale represents a GSD where the average student scored approximately 

one half of a standard deviation higher than the national reference cohort scored in that same 

grade. GSD means reported on the CS scale have an overall average near 0 as expected. Note 

that this scale retains information about absolute changes over time by relying on the stability of 

the NAEP scale over time. This scale does not enable absolute comparisons across grades, 

however.  

The GCS scale standardizes the unit means relative to the average difference in NAEP 

scores between students one grade level apart. The average grade-level difference in national 

NAEP scores is estimated as the within-cohort grade-level change (separately by subject 𝑏), for 

the average of three cohorts of students in 4th grade in 2009, 2011, and 2013 (see detail on how 

�̂�𝑎𝑣𝑔,g𝑏
naep

 and �̂�𝑎𝑣𝑔,𝑔𝑏
𝑛𝑎𝑒𝑝  are calculated in Step 3). It is denoted �̂�𝑎𝑣𝑔,𝑏: 

 
�̂�avg,𝑏 =

�̂�𝑎𝑣𝑔,8𝑏
naep

− �̂�𝑎𝑣𝑔,4𝑏
naep

4
 

(7.1) 

We then identify the linear transformation that sets the grade 4 and 8 averages for this 

cohort at the “grade level” values of 4 and 8 respectively. Then transform unit means, standard 

deviations, and their variances accordingly: 

 �̂�𝑢𝑟𝑦𝑔𝑏
𝑔𝑐𝑠 = 4 +

�̂�𝑎𝑣𝑔,g𝑏
naep

− �̂�𝑎𝑣𝑔,4𝑏
naep

𝛾𝑎𝑣𝑔,𝑏
+

�̂�𝑎𝑣𝑔,𝑔𝑏
𝑛𝑎𝑒𝑝

𝛾𝑎𝑣𝑔,𝑏
𝜇𝑢𝑟𝑦𝑔𝑏

𝑐𝑠  

 

(7.2) 



 
 

31 
 

�̂�𝑢𝑟𝑦𝑔𝑏
𝑔𝑐𝑠 =

�̂�𝑎𝑣𝑔,𝑔𝑏
𝑛𝑎𝑒𝑝

𝛾𝑎𝑣𝑔,𝑏
�̂�𝑢𝑟𝑦𝑔𝑏

𝑐𝑠  

𝑣𝑎𝑟(�̂�𝑑𝑦𝑔𝑏
𝑔𝑐𝑠 ) = (

4𝜎𝑔𝑏

𝜇8𝑏 − 𝜇4𝑏
)
2

𝑣𝑎𝑟(�̂�𝑑𝑦𝑔𝑏
𝑐𝑠 ) = (

𝜎𝑔𝑏

𝛾𝛾𝑏
)
2

𝑣𝑎𝑟(�̂�𝑑𝑦𝑔𝑏
𝑐𝑠 ) 

 

𝑣𝑎𝑟(�̂�𝑑𝑦𝑔𝑏
𝑔𝑐𝑠 ) = (

4𝜎𝑔𝑏

𝜇8𝑏 − 𝜇4𝑏
)
2

𝑣𝑎𝑟(�̂�𝑑𝑦𝑔𝑏
𝑐𝑠 ) = (

𝜎𝑔𝑏

𝛾𝑏
)
2

𝑣𝑎𝑟(�̂�𝑑𝑦𝑔𝑏
𝑐𝑠 ) 

 
 

Then, �̂�𝑢𝑟𝑦𝑔𝑏
𝑔𝑐𝑠  can be interpreted as the estimated average national “grade-level 

performance” of students in unit 𝑢, subgroup 𝑟, year 𝑦, grade 𝑔, and subject 𝑏. For example, if 

�̂�𝑢𝑟𝑦4𝑏
𝑔𝑐𝑠

= 5, 4th-grade students in unit 𝑢, subgroup 𝑟, and year 𝑦 are one grade level (�̂�2009𝑏) 

above the 4th grade 2009-2013 national average (�̂�𝑎𝑣𝑔,4𝑏
𝑛𝑎𝑒𝑝 ) in performance on the tested subject 

𝑏.  

GSD means reported on the GCS scale have an overall average near 5.5 (midway between 

grades 3 and 8) as expected. This metric enables absolute comparisons across grades and over 

time, but it does so by relying not only on the fact that the NAEP scale is stable over time but 

also that it is vertically linked across grades 4 and 8 and linear between grades. This metric is a 

simple linear transformation of the NAEP scale, intended to render the NAEP scale more 

interpretable. As such, this metric is useful for descriptive research to broad audiences not 

familiar with interpreting standard deviation units. However, we do not advise it for analyses 

where the vertical linking across grades and the linear interpolation assumptions are not 

required or defensible.  
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Step 8. Calculating Achievement Gaps 

We provide achievement gap estimates in SEDA 3.0 for all units except schools. Gaps are 

estimated as the difference in average achievement between subgroups, using the mean 

estimates from Steps 5, 6 and 7. We provide white-black (𝑤𝑏𝑔), white-Hispanic (𝑤ℎ𝑔), white-

Asian (𝑤𝑎𝑔), male-female (𝑚𝑓𝑔), and nonECD-ECD (𝑛𝑒𝑔) achievement.  

In each scale, the unit-subject-grade-year gap is given by the difference in the means, 

e.g., the white-black gap is given by: 

 𝑤𝑏�̂�𝑢𝑦𝑔𝑏
𝑥 = �̂�𝑢(𝑟=𝑤ℎ𝑡)𝑦𝑔𝑏

𝑥 − �̂�𝑢(𝑟=𝑏𝑙𝑘)𝑦𝑔𝑏
𝑥   (9.1) 

where 𝑥 denotes a particular scale (CS, GCS) described in Steps 3 and 7 above. The standard 

error of the gap is given by: 

 𝑠𝑒(𝑤𝑏�̂�𝑢𝑦𝑔𝑏
𝑥 ) = √𝑠𝑒(�̂�𝑢(𝑟=𝑤ℎ𝑡)𝑦𝑔𝑏

𝑥 )
2
+ 𝑠𝑒(�̂�𝑢(𝑟=𝑏𝑙𝑘)𝑦𝑔𝑏

𝑥 )
2
 (9.2) 

The gaps can be interpreted similarly to the means in the units defined by the CS and GCS 

scales. If one or both of the subgroup means needed for the calculation is excluded in a given 

unit-subject-grade-year, the gap estimate will also be excluded.   
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Step 9. Pooled Mean and Gap Estimates 

Pooled Mean Estimates 

For each unit-subgroup, we have up to 96 subject-grade-year mean estimates (8 years, 6 

grades, 2 subjects). We pool the estimates within a unit using precision-weighted random-

coefficient models. These models provide more precise estimates of average performance in a 

unit (across grades and cohorts), as well as estimates of the grade slope (the “learning rate” at 

which scores change across grades, within a cohort) and cohort slope (the “trend” or rate at 

which scores change across student cohorts, within a grade). For GSDs, counties, CZs and 

metros, we provide both subject-specific and overall pooled estimates. For schools we provide 

only overall pooled estimates. 

Subject-Specific Pooled Estimates. This model allows each unit-subgroup to have a 

subject-specific intercept (average test score), a subject-specific linear grade slope (the “learning 

rate”), and a subject-specific cohort trend (the “trend”). We fit the following model for GSDs, 

counties, CZs, and metros: 

 

�̂�𝑢𝑟𝑦𝑔𝑏
𝑥 = [𝛽0𝑚𝑑 + 𝛽1𝑚𝑑(𝑐𝑜ℎ𝑜𝑟𝑡𝑢𝑟𝑦𝑔𝑏 − 2006.5)

+ 𝛽2𝑚𝑑(𝑔𝑟𝑎𝑑𝑒𝑢𝑟𝑦𝑔𝑏 − 5.5)]𝑀𝑏

+ [𝛽0𝑒𝑑 + 𝛽1𝑒𝑑(𝑐𝑜ℎ𝑜𝑟𝑡𝑢𝑟𝑦𝑔𝑏 − 2006.5)

+ 𝛽2𝑒𝑑(𝑔𝑟𝑎𝑑𝑒𝑢𝑟𝑦𝑔𝑏 − 5.5)]𝐸𝑏 + 𝜖𝑢𝑟𝑦𝑔𝑏 + 𝑒𝑢𝑟𝑦𝑔𝑏 

𝛽0𝑚𝑢 = 𝛾0𝑚0 + 𝑣0𝑚𝑢 

𝛽1𝑚𝑢 = 𝛾1𝑚0 + 𝑣1𝑚𝑢 

𝛽2𝑚𝑢 = 𝛾2𝑚0 + 𝑣2𝑚𝑢 

𝛽0𝑒𝑢 = 𝛾0𝑒0 + 𝑣0𝑒𝑢 

𝛽1𝑒𝑢 = 𝛾1𝑒0 + 𝑣1𝑒𝑢 

𝛽2𝑒𝑢 = 𝛾2𝑒0 + 𝑣2𝑒𝑢 

𝑒𝑢𝑦𝑔𝑏~𝑁(0,𝜔𝑢𝑦𝑔𝑏
2 ); 𝜖𝑢𝑦𝑔𝑏~𝑁(0, 𝜎2); [

𝑣0𝑚𝑢

⋮
𝑣2𝑒𝑢

]~𝑀𝑉𝑁(0, 𝝉2). 

(9.1) 

In this model, 𝑀𝑏  is an indicator variable equal to 1 if the subject is math and 𝐸𝑏 is an 

indicator variable equal to 1 if the subject is ELA.  𝛽0𝑏𝑢 represents the mean test score in subject 

𝑏, in unit 𝑢, in grade 5.5 for cohort 2006.5. 𝑐𝑜ℎ𝑜𝑟𝑡 is defined as 𝑦𝑒𝑎𝑟 − 𝑔𝑟𝑎𝑑𝑒, so this pseudo-
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cohort and pseudo-grade represents the center of our data’s grade and cohort ranges, since the 

middle year is 2012 and the middle grade is 5.5. The 𝛽1𝑏𝑢 parameter indicates the average 

within-grade (cohort-to-cohort) change per year in average test scores in unit 𝑢 in subject 𝑏; 

and, the 𝛽2𝑏𝑢 indicates the average within-cohort change per grade in average test scores in unit 

𝑢 in subject 𝑏. 

If the model is fit using one of the scales that standardizes scores within grades (the 𝑐𝑠 

scale), the coefficients will be interpretable in NAEP student-level standard deviation units 

(relative to the specific standard deviation used to standardize the scale). Between-unit 

differences in 𝛽0𝑏𝑢, 𝛽1𝑏𝑢, and 𝛽2𝑏𝑢 will be interpretable relative to this same scale. If the model 

is fit using the grade-level scale (𝑔𝑐𝑠), the coefficients will be interpretable as test score 

differences relative to the average between-grade difference among students.  

Overall Pooled Estimates. SEDA 3.0 also provides estimates pooled across grades, years, 

and subjects. For GSDs, counties, CZs, and metros, this model is as follows: 

 

�̂�𝑢𝑦𝑔𝑏
𝑥 = 𝛽0𝑢 + 𝛽1𝑢(𝑐𝑜ℎ𝑜𝑟𝑡𝑢𝑦𝑔𝑏 − 2006) + 𝛽2𝑢(𝑔𝑟𝑎𝑑𝑒𝑢𝑦𝑔𝑏 − 5.5)

+ 𝛽3𝑢(𝑀𝑏 − .5) + 𝜖𝑢𝑦𝑔𝑏 + 𝑒𝑢𝑦𝑔𝑏 

𝛽0𝑢 = 𝛾00 + 𝑣0𝑢 

𝛽1𝑢 = 𝛾10 + 𝑣1𝑢 

𝛽2𝑢 = 𝛾20 + 𝑣2𝑢 

𝛽3𝑢 = 𝛾30 + 𝑣3𝑢 

𝑒𝑢𝑦𝑔𝑏~𝑁(0,𝜔𝑢𝑦𝑔𝑏
2 ); 𝜖𝑢𝑦𝑔𝑏~𝑁(0, 𝜎2); [

𝑣0𝑢

𝑣1𝑢

𝑣2𝑢

𝑣3𝑢

]~𝑀𝑉𝑁(0, 𝝉2). 

(9.2) 

This model allows each unit to have a unit-specific intercept (average test score, pooled 

over subjects), linear grade slope (the “learning rate” at which scores change across grades, 

within a cohort, pooled over subjects), cohort trend (the “trend,” or rate at which scores change 

across student cohorts, within a grade, pooled over subjects), and the math-ELA difference.  

Tables 8 and 9 report the variance and covariance terms from the estimated 𝝉𝟐 matrices 

from the pooling models for GSDs, counties, CZs, and metros. Tables 10 and 11 report the 

estimated reliabilities from these models. 
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For schools, we estimate the same general model as shown in equation (9.2). However, 

we use different grade and cohort centering. Specifically, we center relative to the middle grade 

of the school. We define the middle grade as the middle grade for which we have test score 

estimates from Step 5, regardless of whether or not the school serves additional grades or tested 

in other grades for which we could not produce estimates. For each school, the middle grade is: 

𝑚𝑔𝑛 =
max(𝑔𝑟𝑎𝑑𝑒)𝑛+min(𝑔𝑟𝑎𝑑𝑒)𝑛

2
. Cohort is centered at: 𝑚𝑐𝑛 = (2012.5 − 𝑚𝑔𝑛). Note that 

2012.5 is the middle year of our data: 
2016+2009

2
= 2012.5. We use this same middle year, 

regardless of whether or not the school was observed over that whole time period. For 

reference, the schools in our sample tend to serve common grade spans: grades 3-5 (26,572 

schools); grades 3-6 (13,330 schools); grades 3-8 (10,549 schools); grades 6-8 (12,729 schools); 

and, grades 7-8 (5,426 schools). In total, schools serving these grade spans make up 85% of all 

schools in our sample. 

 Tables 12 and 13 report the variance and covariance terms from the estimated 𝝉𝟐 

matrices, as well as the reliabilities, from the school pooling models. 

 

Pooled Gap Estimates 

We use the same models to pool gaps in GSDs, counties, CZs, and metros; however, the 

interpretation of the parameters differs. From these models, we recover the average test score 

gap across grades and years, the rate of the gap changes over grades within cohorts, and the 

trend in the gap across cohorts within grades. 

Notably the pooled gaps are not identical to the difference in the pooled mean estimates. 

For users interested in analyzing pooled achievement gaps, it is important to use the pooled gap 

estimates rather than taking the difference between pooled estimates of group-specific means. 

For example, the pooled white-black gap estimate in unit 𝑢 is obtained by 1) computing the gap 

(the difference in mean white and black scores) in each unit-grade-year-subject; 2) fitting model 

10.1 or 10.2 above using these gap estimates on the left-hand side; and 3) constructing �̂�0𝑢
𝑜𝑙𝑠 and 

�̂�0𝑢
𝑒𝑏 from the estimates. This is the preferred method of computing the average gap in unit 𝑢. 

The alternative approach (taking the difference of pooled white and black mean scores) will not 

yield the same estimates. That is, this preferred approach will not yield identical estimates of 
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pooled gaps as: 1) fitting model 10.1 or 10.2 above using the white mean estimates on the left-

hand side; 2) constructing �̂�0𝑢(𝑟=𝑤ℎ𝑡)
𝑜𝑙𝑠  and �̂�0𝑢(𝑟=𝑤)

𝑒𝑏  for white students from the estimates; 3) 

doing the same with black student mean scores to construct �̂�0𝑢(𝑟=𝑏𝑙𝑘)
𝑜𝑙𝑠  and �̂�0𝑢(𝑟=𝑏𝑙𝑘)

𝑒𝑏  for black 

students; and then 4) estimating gaps by subtracting �̂�0𝑢(𝑟=𝑤ℎ𝑡)
𝑜𝑙𝑠 − �̂�0𝑢(𝑟=𝑏𝑙𝑘)

𝑜𝑙𝑠  and �̂�0𝑢(𝑟=𝑤ℎ𝑡)
𝑒𝑏 −

�̂�0𝑢(𝑟=𝑏𝑙𝑘)
𝑒𝑏 . In particular, the EB shrunken mean of the gaps is not in general equal to the 

difference in the EB shrunken means. The former is preferred.  

 

OLS and EB Estimates from Pooled Models 

SEDA 3.0 contains two sets of estimates derived from the pooling models described in 

Equations (9.1) and (9.2). First are what we refer to as the OLS estimates of 𝛽0𝑢, … , 𝛽3𝑢. Second 

are the Empirical Bayes (EB) shrunken estimates of 𝛽0𝑢, … , 𝛽3𝑢. The OLS estimates are the 

estimates of 𝛽0𝑢, … , 𝛽3𝑢 that we would get if we took the fitted values from Model (9.1) or (9.2) 

and added in the residuals 𝑣0𝑢, … , 𝑣3𝑢. That is �̂�0𝑢
𝑜𝑙𝑠 = �̂�00 + �̂�0𝑢, for example. These are 

unbiased estimates of 𝛽0𝑢, … , 𝛽3𝑢, but they may be noisy in small units. We obtain standard 

errors of these as described in Appendix A2. 

The EB estimates are based on the fitted model as well, but they include the EB shrunken 

residual. That is, �̂�0𝑢
𝑒𝑏 = �̂�00 + �̂�0𝑢

𝑒𝑏, for example, where �̂�0𝑢
𝑒𝑏 is the EB residual from the fitted 

model. The EB estimates are biased toward �̂�00, but have statistical properties that make them 

suited for inclusion as predictor variables or when one is interested in identifying outlier GSDs. 

We report the square root of the posterior variance of the EB estimates as the standard error of 

the EB estimate.  

For a small number of cases, we were unable to recover an estimate of the OLS SE for a 

given parameter. For these, we report only the EB estimates of the parameter and standard 

error.  

In general, the EB estimates should be used for descriptive purposes and as predictor 

variables on the right-hand side of a regression model; they are the estimates shown on the 

website (https://edopportunity.org). They should not be used as outcome variables in a 

regression model because they are shrunken estimates. Doing so may lead to biased parameter 

estimates in fitted regression models. The OLS estimates are appropriate for use as outcome 
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variables in a regression model. When using the OLS estimates as outcome variables, we 

recommend fitting precision-weighted models that account for the known error variance of the 

OLS estimates.  

 

Replicating the Pooled Estimates 

 Notably, we pooled non-noised long-form estimates prior to data suppression in Step 10 

(see below). Users will not be able to identically replicate our pooled estimates given two 

differences between the public long files and the ones used to create the pooled estimates: 

added noise and fewer estimates. However, the results should be largely similar.  
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Step 10. Suppressing Data for Release 

Long Form Files  

For the GSD, county, CZ, and metro long-form files, our agreement with the US 

Department of Education requires (1) that all reported cells reflect at least 20 students; and (2) 

that a small amount of random noise is added to each estimate in proportion to the sampling 

variance of the respective estimate. We (1) drop any estimate that does not reflect at least 20 

students and (2) adjust the SEs of the means to account for the additional error.  

The added noise is roughly equivalent to randomly removing one student’s score from 

each unit-subgroup-subject-grade-year estimate. These measures are taken to ensure that the 

raw counts of students in each proficiency category cannot be recovered from published 

estimates. The random error added to each to unit-subgroup estimate is drawn from a normal 

distribution 𝒩(0, (1/𝑛) ∗ 𝜔2̂) where 𝜔2̂ is the squared estimated standard error of the 

estimate and 𝑛 is the number of student assessment outcomes to which the estimate applies. 

SEs of the mean are adjusted to account for the additional error. The added noise is roughly 

equivalent to the amount of error that would be introduced by randomly removing one 

student’s score from each unit-subgroup-grade-year estimate.  

In addition, we remove any imprecise individual estimates where the CS scale standard 

error greater than 2 standard deviations. Any individual estimate with such a large standard 

error is too imprecise to use in analysis. Table 14 summarizes the cases removed in the GSD, 

county, CZ, and metro long files. 

 

Pooled Files  

In the interest of discouraging the over-interpretation of imprecisely estimated 

parameters, SEDA 3.0 does not report EB or OLS estimates of 𝛽𝑢 when OLS reliabilities are below 

0.7. We compute the reliability of OLS estimate �̂�𝑘𝑢
𝑜𝑙𝑠 as 

�̂�𝑘
2

�̂�𝑘
2+�̂�𝑘𝑢

, where �̂�𝑘
2 is the 𝑘𝑡ℎ diagonal 

element of the estimated 𝝉𝟐 matrix (the estimated true variance of 𝛽𝑘𝑑) and �̂�𝑘𝑢 is the square of 

the estimated standard error of �̂�𝑘𝑢
𝑜𝑙𝑠. That is, we do not report �̂�𝑘𝑢

𝑜𝑙𝑠 if �̂�𝑘𝑢 >
3

7
�̂�𝑘

2. For subgroups, 
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we use the same procedure. However, we use the standard error threshold determined for all 

students to censor estimates rather than calculate a subgroup-specific threshold.  

 

 

I I.E. Additional Notes 

Gender Mean and Gap Estimates. Recent research reported by Reardon, Kalogrides, et al. 

(2019) suggests that the magnitude of gender achievement gaps can be impacted by the 

proportion of test items that are multiple-choice versus constructed-response. As a result, 

differences in gender gaps across states (or across time when a state changes the format of its 

test) may confound true differences in achievement with differences in the format of the state 

test used to measure achievement. See Reardon, Fahle, et al. (2019) for a description of an 

analytic strategy that can be used to adjust for these potential effects. 
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III. Covariate Data Construction 

SEDA 3.0 contains CCD and ACS data that have been curated for use with the school, 

GSD, county, and metro achievement data. SEDA 3.0 differs from the prior version of SEDA in 

that it uses the new crosswalk files to aggregate the covariates to GSDs and counties, as well as 

releases school and metro covariate data. 

III.A. ACS Data and SES Composite Construction 

For GSDs, counties and metros, we use data from the ACS to construct measures of 

median family income, proportion of adults with a bachelor’s degree or higher, proportion of 

adults that are unemployed, the household poverty rate, the proportion of households receiving 

SNAP benefits, and the proportion of households with children that are headed by a single 

mother. We also combine these measures to construct a single socioeconomic status composite.  

ACS data for districts and counties are available as 5-year pooled samples, from which we 

use samples from 2006-2010 through 2012-2016.  The samples we use here reflect data for the 

total population of residents in each unit. In select years, district-level tabulations are also 

available for families who live in each school district in the U.S and who have children enrolled in 

public school. However, the most recent sample of this data that has all of the information we 

need is the 5-year 2007-2011 sample. We prefer to use the total population tabulation data from 

more recent years. We have compared measures constructed using the total population samples 

and the relevant children enrolled in public schools samples in years where both samples are 

available and the measures are highly correlated (r > 0.99) and not sensitive to which sample we 

use.  

The construction of our derived measures from the ACS data occurs in a variety of steps, 

which we describe below. Our derivation of these measures is complicated by the fact that we 

use the ACS-reported margins of error to compute empirical Bayes shrunken versions of our key 

ACS measures. The shrunken measures help account for attenuation bias that results from the 

fact that smaller units’ measures include more measurement error due to smaller sample sizes. 

Appendix B2 describes the problems of measurement error and attenuation bias in detail. Below 

we describe the steps we take to create our derived measures from the raw ACS data:  
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Step 1: We download and clean the raw ACS data for each year and unit, saving the 

measures of interest along with their margins of error. We use data from the 2006-2010, 2007-

2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, and 2012-2016 samples. We were unable 

to locate all the necessary margins of error for the 2005-2009 sample so do not use those data 

here. In Appendix B1 we provide a list of the raw ACS data tables we downloaded and use to 

compute each derived measure.  

Step 2: Some of our derived measures require combining various fields from ACS in order 

to compute our desired metric. For example, in order to compute the proportion of adults with a 

bachelor’s degree or higher we sum the number of men with a bachelor’s degree, a master’s 

degree or a professional degree with the number of women with a bachelor’s degree, a master’s 

degree or a professional degree and divide that sum by the total number of adults in the unit. 

Each of these component measures is reported with its own margin of error in the raw ACS data. 

We use the margins of error from each component measure to generate a single standard error 

for the combined bachelor’s degree attainment rate variable (and do the same for all 6 

socioeconomic measures that make up the SES composite).  Appendix B3 describes our 

methodology for computing the sampling variance of sums of ACS variables in detail.   

Step 3: After constructing the 6 SES measures and their standard errors we impute some 

missing data using Stata’s –mi impute chained– routine, which fills in missing values iteratively by 

using chained equations. We reshape the data from long (one observation for each unit and race 

group [all, white, black and Hispanic] in each year) to wide (one observation for each unit and a 

separate variable for each of the 6 SES by race measures in each year).  We use both the 6 SES 

measures and their standard errors in the imputation model as well as the total population 

count in each unit. The imputation model, therefore, includes median income, proportion of 

adults with a bachelor’s degree or higher, child poverty rate, SNAP receipt rate, single mother 

headed household rate, and unemployment rate for each race group (all, white, black, Hispanic) 

in each of 7-year spans for both the estimates and their standard errors. We estimate the 

imputation model 5 times.  

Step 4: Next we use the imputed data to compute the SES composite. This is done 5 times 

for each imputed data set and then we take the average. This measure is computed as the first 
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principal component score of the following measures (each standardized): median income, 

percent of adults ages 25 and older with a bachelor’s degree or higher, child poverty rate, SNAP 

receipt rate, single mother headed household rate, and employment rate for adults ages 16-64. 

We use the logarithm of median income in these computations. We calculate the component 

loadings by conducting the analysis in 2008-2012 at the GSD level and weighting by GSD 

enrollment. We then use the loadings from this principal component analysis to calculate SES 

composite values for different subgroups, years and units. Note that only observations without 

any imputed ACS data are used in the computation of the factor weights.   

Table 15 shows the component loadings for the socioeconomic status composite as well as 

the mean and standard deviation of each measure it includes. The “standardized loadings” 

indicate the coefficients used to compute the overall GSD SES composite score from the 6 

standardized indicator variables in 2008-2012, resulting in an SES composite that has an 

enrollment-weighted mean of 0 and standard deviation of 1 across all GSDs in 2008-2012 

without any imputed data. The “unstandardized loadings” are re-scaled versions of the 

coefficients that are used to construct an SES composite score from the raw (unstandardized) 

indicator variables, but which is on the same scale as the standardized SES composite scores.  

To provide context for interpreting values of the SES composite, Table 16 reports average 

values of the indicator variables at different values of the SES composite. 

 Step 5: The next step is to construct a standard error of the SES composite. We discuss 

our methodology in detail in Appendix B4.  

Step 6: The final step is to do the empirical Bayes shrinking for the SES composites as well 

as for each of the 6 SES measures that go into making the composite. In addition to the time-

varying versions of the SES composite, we also create an SES composite that is the average of 

SES in the 2007-2011 and 2012-2016 ACS (i.e., using years with non-overlapping samples). The 

shrinkage is done using a random effects meta-analysis regression model weighted by the 

standard error of each measure.  
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III.B. Common Core of Data Imputation  

School-level data from the CCD are available from Fall 1987 until Fall 2015. There is some 

missing data on racial composition and free/reduced price lunch receipt for some schools in 

some years. We therefore impute missing data on race/ethnicity and free/reduced priced lunch 

counts at the school level prior to aggregating data to the GSD, county, or metro level. The 

imputation model includes school-level data from the 1991-92 through 2015-16 school years 

and measures of total enrollment, enrollments by race (black, Hispanic, white, Asian, and Native 

American), enrollments by free and reduced-priced lunch receipt (note that reduced-priced 

lunch is only available in 1998 and later), an indicator for whether the school is located in an 

urban area, and state fixed effects. To improve the imputation of free and reduced-priced lunch 

in more recent years we also use the proportion of students at each school that are classified as 

economically disadvantaged in the EDFacts data for 2008-09 through 2015-16 in the imputation 

model. Different states use different definitions of economically disadvantaged but these 

measures are highly correlated with free lunch rates from the CCD (r=.90). The imputations are 

estimated using predictive mean matching in Stata’s –mi impute chained– routine, which fills in 

missing values iteratively by using chained equations. The idea behind this method is to impute 

variables iteratively using a sequence of univariate imputation models, one for each imputation 

variable, with all variables except the one being included in the prediction equation on the right-

hand side. This method is flexible for imputing data of different types. For more information, see: 

https://www.stata.com/manuals13/mi.pdf. 

Prior to the imputation, we make three changes to the reported raw CCD data. First, for 

states with especially high levels of missing free and reduced-price lunch data in recent years, we 

searched state department of education websites for alternative sources of data. We were only 

able to locate the appropriate data for Oregon and Ohio. For these states we replace CCD counts 

of free and reduced-price lunch receipt with the counts reported in state department of 

education data for 2008-09 through 2015-16. In Ohio, 8% of schools were missing CCD free 

lunch data in 4 or more of the 7 EDFacts years. In Oregon, 5% of schools were missing CCD free 

lunch data in 4 or more of the 7 EDFacts years. Other states with high rates of missing free lunch 

data in the CCD during the EDFacts years are Alaska, Arizona, Montana, Texas, and Idaho. 

https://www.stata.com/manuals13/mi.pdf
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Unfortunately, we were unable to locate alternative data sources for these states, and rely on 

the imputation model to fill in missing data.  

Second, starting in the 2011-12 school year some states began using community 

eligibility for the delivery of school meals whereby all students attending schools in low-income 

areas would have access to free meals regardless of their individual household income. Free 

lunch counts in schools in the community eligibility program are not reported in the same way 

nation-wide in the CCD. In community eligible schools, some schools report that all of their 

students are eligible for free lunch while others report counts that are presumably based on the 

individual student-level eligibility. Because reported free lunch eligible rates of 100 percent in 

community eligible schools may not accurately reflect the number of children from poor families 

in the school, we impute free lunch eligible rates in these schools. We replace free and reduced 

priced lunch counts as equal to missing if the school is a community eligible program school in a 

given year and their reported CCD free lunch rate is 100 percent. We then impute their free 

lunch eligible rate as described above.  

Third, and finally, prior to imputation we replaced free and reduced-price lunch counts as 

missing if the count was equal to 0. Anomalies in the CCD data led some cases to be reported as 

zeros when they should have been missing so we preferred to delete these 0 values and impute 

them using other years of data from that school.   

The structure of the data prior to imputation is wide – that is, there is one variable for 

each year for any given measure (i.e., total enrollment 1991, total enrollment 1992, total 

enrollment 1993, …, total enrollment 2015) for all the measures described above. The exception 

are time invariant measures – urbanicity and state. We impute 6 datasets and use the average of 

the 6 imputed values for each school in each year.  
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IV. Versioning and Publication 

New or revised data will be posted periodically to the SEDA website. SEDA updates that 

contain substantially new information are labeled as a new version (e.g. V1.0, V2.0, etc.). 

Updates that make corrections or minor revisions to previously posted data are labeled as a 

subsidiary of the current version (e.g. V1.1, V1.2, etc.). When citing any SEDA data set for 

presentation, publication or use in the field, please include the version number in the citation. All 

versions of the data will remain archived and available on the SEDA website to facilitate data 

verification and research replication. 

 

SEDA 3.0 makes the following additions to data contained in SEDA 2.1, we now release: 

• Pooled estimates of the average test scores in schools with at least 20 students 

across grades and years. 

• Subject-grade-year (long) estimates of the average test scores for all students and by 

student subgroups for metropolitan statistical areas and commuting zones. 

• Subject-grade-year (long) estimates of the average test scores by economic 

disadvantage, including estimated achievement gaps between non-disadvantaged 

and disadvantaged students.  

 

SEDA 3.0 makes the following modifications to the procedures used in SEDA 2.1: 

• We changed the estimation procedure for all units to use the pooled HETOP model 

rather than the original HETOP model. When constraining estimates, this model 

draws on information from the same unit, rather than different units. We believe that 

this improves our mean estimates in units where some cells do not have sufficient 

data to estimate a unique standard deviation. 

• We do not add any additional noise to the “pool” files per a revised agreement with 

the NCES. We also now release pooled estimates for units with at least 20 unique 

students (across grades/years), rather than requiring at least 20 students within each 

grade/year. 
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• Prior to estimation, we now remove cases where more than 40% of students take 

alternate assessments. We also do not report estimates for unit-subgroups with more 

than 20% of students taking alternate assessments. 

• All test score and covariate data files have been updated to reflect updates to the 

crosswalk file (described in Step 1), including: 

o Minor corrections.  

o A new policy for districts that reorganize during the time frame of our data.  

o We use stable county identifiers, in cases where we observe that a district is 

placed in multiple counties during the years in our sample. The district is 

assigned to the county it is observed in during the 2015-16 school year.  
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Tables 

Table 1. Test Score Files 

 
Notes: 

Metric:      CS = Cohort Scale; GCS = Grade Scale 
Unit  Metro = Metropolitan Statistical Area; CZ = Commuting Zone 
Academic Years: 2008/09 – 2014/16 
Grades:     3 – 8 
Subjects:   Math, ELA 
Race:           white, black, Hispanic, and Asian 
Race Gaps:       white-black, white-Hispanic, white-Asian 
Gender:  male, female 
Gender Gaps: male-female 
ECD:  economically disadvantaged, not disadvantaged (as defined by states) 
ECD Gaps: not disadvantaged-economically disadvantaged 

All Race Gender ECD Race Gender ECD

SEDA_school_pool_cs_v30 Pooled CS X X

SEDA_school_pool_gcs_v30 Pooled GCS X X

SEDA_geodist_long_cs_v30 Long CS X X X X X X X X X X X

SEDA_geodist_long_gcs_v30 Long GCS X X X X X X X X X X X

SEDA_geodist_poolsub_cs_v30 Pooled CS X X X X X X X X X

SEDA_geodist_poolsub_gcs_v30 Pooled GCS X X X X X X X X X

SEDA_geodist_pool_gcs_v30 Pooled CS X X X X X X X X

SEDA_geodist_pool_cs_v30 Pooled GCS X X X X X X X X

SEDA_county_long_cs_v30 Long CS X X X X X X X X X X X

SEDA_county_long_gcs_v30 Long GCS X X X X X X X X X X X

SEDA_county_poolsub_cs_v30 Pooled CS X X X X X X X X X

SEDA_county_poolsub_gcs_v30 Pooled GCS X X X X X X X X X

SEDA_county_pool_cs_v30 Pooled CS X X X X X X X X

SEDA_county_pool_gcs_v30 Pooled GCS X X X X X X X X

SEDA_metro_long_cs_v30 Long CS X X X X X X X X X X X

SEDA_metro_long_gcs_v30 Long GCS X X X X X X X X X X X

SEDA_metro_poolsub_cs_v30 Pooled CS X X X X X X X X X

SEDA_metro_poolsub_gcs_v30 Pooled GCS X X X X X X X X X

SEDA_metro_pool_cs_v30 Pooled CS X X X X X X X X

SEDA_metro_pool_gcs_v30 Pooled GCS X X X X X X X X

SEDA_commzone_long_cs_v30 Long CS X X X X X X X X X X X

SEDA_commzone_long_gcs_v30 Long GCS X X X X X X X X X X X

SEDA_commzone_poolsub_cs_v30 Pooled CS X X X X X X X X X

SEDA_commzone_poolsub_gcs_v30 Pooled GCS X X X X X X X X X

SEDA_commzone_pool_cs_v30 Pooled CS X X X X X X X X

SEDA_commzone_pool_gcs_v30 Pooled GCS X X X X X X X X

Means GapsFile Name Form Metric

Disaggregated by Subgroups

Geographic 

District
County Metro

commz

one
School

Unit

Year Grade Subject
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Table 2. Covariate Data Files 

 

 

 

 

 

  

Unit Year Grade

SEDA_cov_school_pooled_v30 Pooled X

SEDA_cov_geodist_long_v30 Long X X X

SEDA_cov_geodist_poolyr_v30 Pooled X X

SEDA_cov_geodist_pool_v30 Pooled X

SEDA_cov_county_long_v30 Long X X X

SEDA_cov_county_poolyr_v30 Pooled X X

SEDA_cov_county_pool_v30 Pooled X

SEDA_cov_metro_long_v30 Long X X X

SEDA_cov_metro_poolyr_v30 Pooled X X

SEDA_cov_metro_pool_v30 Pooled X

File Name Form
Disaggregated by
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Table 3. Example EDFacts Data Structure 

 

 

Level 1 Level 2 Level 3 Level 4

1 All Students Math 3 2009 26 87 185 32

1 All Students ELA 3 2009 13 102 195 20

2 All Students Math 3 2009 35 238 192 7

2 All Students ELA 3 2009 7 278 187 0

Number of students scoring at…
School Group Subject Grade Year
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Table 4. State-Subject-Year-Grade Data Not Included in SEDA 3.0 

 
Note: Year is spring of year, so 2016 is the 2015-16 school year. 
  

State Abbreviation Reason for Missing Cases missing (gyb)

AK No EdFacts data submitted by state 2016: ELA 3-8, Math 3-8

AR Math tests vary by course 2009: Math 8; 2010: Math 8; 2015: Math 8

CA Incomplete data due to pilot testing 2014: Math 7-8

CA Math tests vary by course 2009: Math 7-8; 2010: Math 7-8; 2011: Math 7-8; 2012: Math 7-8; 2013: Math 7-8; 2014: Math 7-8

CA Participation below 95% 2014: ELA 3-8, Math 3-6

CO Participation below 95% 2015: ELA 5-8, Math 4-8; 2016: ELA 5-8, Math 4-8

CO State had 1 cutscore 2009: ELA 3-8, Math 3-8; 2010: ELA 3-8, Math 3-8; 2011: ELA 3-8, Math 3-8

CT Participation below 95% 2014: ELA 3-8, Math 3-8

DC Participation below 95% 2015: ELA 8, Math 8

FL Participation below 95% 2014: Math 3-8

ID Participation below 95% 2014: ELA 3-8, Math 3-8

IL Participation below 95% 2015: ELA 8, Math 8

KS No EdFacts data submitted by state 2014: ELA 3-8, Math 3-8

MD Participation below 95% 2014: ELA 3-7, Math 3-7

ME Participation below 95% 2015: ELA 7-8, Math 6-8

MO Math tests vary by course 2013: Math 8; 2014: Math 8; 2015: Math 8; 2016: Math 8

MT Participation below 95% 2014: ELA 3-8, Math 3-8; 2015: ELA 3-8, Math 3-8

ND Math tests vary by course 2015: Math 6

ND Participation below 95% 2015: ELA 5-8, Math 7-8

NE Each district allowed to have their own test 2009: Math 3-8; 2010: Math 3-8

NH Participation below 95% 2015: ELA 8, Math 8; 2016: ELA 8

NJ Participation below 95% 2015: ELA 3-8, Math 3-8; 2016: ELA 3-8, Math 3-8

NM State had 1 cutscore 2015: ELA 3-8, Math 3-8; 2016: ELA 3-8, Math 3-8

NV No EdFacts data submitted by state 2015: ELA 3-8, Math 3-8

NV Participation below 95% 2014: ELA 3-8, Math 3-8

NY Participation below 95% 2014: ELA 3-8, Math 3-8; 2015: ELA 3-8, Math 3-8; 2016: ELA 3-8, Math 3-8

OH Math tests vary by course 2015: Math 8

OK Math tests vary by course 2012: Math 8; 2013: Math 8

OR Participation below 95% 2014: ELA 3-8, Math 3-8

RI Participation below 95% 2015: ELA 5-8, Math 6-8

SD Participation below 95% 2014: ELA 3-8, Math 3-8

TN Math tests vary by course 2014: Math 8

TN Testing problems, computers 2016: ELA 3-8, Math 3-8

TX Math tests vary by course 2012: Math 7-8; 2013: Math 7-8; 2014: Math 7-8; 2015: Math 7-8; 2016: Math 7-8

UT Math tests vary by course 2009: Math 8; 2010: Math 8; 2011: Math 8; 2012: Math 8; 2013: Math 8

UT Participation below 95% 2016: Math 8

VA Math tests vary by course 2009: Math 5-8; 2010: Math 5-8; 2011: Math 5-8; 2012: Math 5-8; 2013: Math 5-8; 2014: Math 5-8; 2015: Math 5-8; 2016: Math 5-8

VT Participation below 95% 2014: ELA 3-8, Math 3-8

WA Participation below 95% 2014: ELA 3-8, Math 3-8; 2015: ELA 3-8, Math 3-8; 2016: ELA 3-8, Math 3-8

WV Participation below 95% 2014: Math 3-7; 2016: Math 3-7

WY Greater than 10% more tests than enrollment 2012: ELA 3-8, Math 3-8

WY No EdFacts data submitted by state 2010: ELA 3-8, Math 3-8

WY Participation below 95% 2013: Math 3-8; 2014: ELA 3-8, Math 3-8
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Table 5. Individual GSDs Removed Prior to Estimation due to Data Errors 

 

  

District ID District Name State Grade Year Subject

0200003 Lower Yukon School District AK 3 2015 ela

0509750 Mena School District AR 6 2009 math

0509750 Mena School District AR 6 2009 ela

2201470 St. Helena Parish LA 4 2010 ela

3910019 Marietta City OH 7 2014 math
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Table 6. NAEP Means and Standard Deviations by Year and Grade. 

 

Note: Table shows the interpolated national NAEP estimates. We use the expanded population estimates, which may differ slightly from those reported publicly 
on the website.

Grade 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

8 259.1 260.1 260.9 261.7 263.3 264.8 263.9 263.0 263.5 264.0

7 248.5 249.3 250.0 250.7 252.1 253.4 252.8 252.3 252.6 252.9

6 237.9 238.6 239.2 239.8 240.9 242.0 241.7 241.5 241.6 241.8

5 227.3 227.8 228.3 228.8 229.7 230.5 230.6 230.8 230.7 230.6

4 216.7 217.0 217.4 217.8 218.5 219.1 219.6 220.0 219.8 219.5

3 206.0 206.2 206.5 206.8 207.3 207.7 208.5 209.3 208.8 208.4

8 36.8 36.3 36.0 35.8 35.5 35.3 35.5 35.8 36.4 36.9

7 37.1 36.6 36.5 36.3 36.2 36.1 36.2 36.3 36.9 37.4

6 37.5 37.0 36.9 36.9 36.9 36.9 36.9 36.9 37.4 38.0

5 37.9 37.4 37.4 37.4 37.5 37.6 37.5 37.4 38.0 38.5

4 38.2 37.7 37.8 37.9 38.2 38.4 38.2 38.0 38.5 39.0

3 38.6 38.1 38.2 38.4 38.8 39.2 38.9 38.6 39.0 39.5

Grade 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

8 279.1 280.1 280.8 281.4 282.1 282.7 281.6 280.4 280.6 280.9

7 268.8 269.6 270.2 270.8 271.5 272.1 271.1 270.1 270.2 270.2

6 258.5 259.1 259.7 260.3 260.9 261.6 260.7 259.8 259.7 259.6

5 248.2 248.6 249.2 249.7 250.4 251.0 250.2 249.4 249.2 248.9

4 238.0 238.1 238.7 239.2 239.8 240.4 239.8 239.1 238.7 238.3

3 227.7 227.6 228.1 228.7 229.2 229.8 229.3 228.8 228.2 227.7

8 37.7 37.6 37.3 37.1 37.1 37.1 37.3 37.5 38.5 39.6

7 35.7 35.6 35.4 35.2 35.3 35.4 35.6 35.8 36.8 37.8

6 33.8 33.7 33.5 33.4 33.5 33.7 33.8 34.0 35.0 35.9

5 31.8 31.7 31.6 31.6 31.8 32.0 32.1 32.3 33.2 34.1

4 29.8 29.8 29.8 29.7 30.0 30.3 30.4 30.5 31.4 32.3

3 27.9 27.8 27.9 27.9 28.2 28.6 28.7 28.8 29.6 30.5

Reading/English Language Arts

Means

SDs

Math

Means

SDs
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Table 7. Subject-Grade-Year Cases Removed Pre-Estimation 

Cases Dropped Pre Estimation Districts (dygbr) Metros Counties Commuting Zones

Cases dropped virtual districts 21,881 (0.25%)

Cases dropped because noGEO 2,124 (0.02%)

Manual cases dropped 377,776 (4.33%)

Cases dropped because state participation <95% or > 105% 380,097 (4.35%)

Cases dropped because participation of "all" students <95% or > 105% 469,563 (5.38%) 37,829 (4.97%) 72,284 (3.20%) 40,969 (7.22%)

Cases dropped because participation of case itself <95% or > 105% 502,322 (5.75%) 81,662 (10.73) 155,002 (6.86%) 86,964 (15.31%)

Cases dropped because subgroup category total is not within 5% of all students (gender, race representation) 373,809 (4.28%) Not at metro  level Not at county  level Not at cz  level

Cases dropped because alternative assessments >40% 31,486 (0.36%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Cases dropped because pathological 351,788 (4.03%)

Cases dropped because only PS cells 19,149 (0.22%)

Cases dropped because no NP cells 254,361 (2.91%)

Total cases dropped for any reason 582,060 (6.67%) 84,869 (11.15%) 162,130 (7.17%) 89,714 (15.80%)

Total cases not dropped 8,149,877 (93.33%) 676,185 (88.85%) 2,098,449 (92.83%) 478014 (84.20%)

Total number of cases 8,731,937 (100.00%) 761,054 (100.00%) 2,260,579 (100.00%) 567,728 (100%)

Does not happen at metro  level Does not happen at county  level Does not happen at commuting zone  level

Does not happen at metro  level Does not happen at county  level Does not happen at cz  level
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Table 8. GSD and County Variances and Covariances 

 

Note:  GSD = Geographic district; CZ = Commuting zone; CS = cohort scale; GCS = grade-cohort scale; wht = white; 
blk = black; hsp = Hispanic; asn = Asian; m = male; f = female; wag = white-Asian gap; wbg = white-black gap; whg = 
white-Hispanic gap; mfg = male-female gap; tau = variance; rel = reliability 

  

Unit Metric Subgroup tau(int) tau(grd) cov(int,grd) tau(int) tau(grd) cov(int,grd) tau(int) tau(grd) cov(int,grd)

GSD CS all 0.12292 0.00216 0.00165 0.13408 0.00322 0.00268 0.11941 0.00179 0.00091

GSD CS asn 0.16496 0.00222 0.00183 0.18427 0.00295 0.00344 0.15681 0.00188 0.00072

GSD CS blk 0.07583 0.00245 0.00185 0.07936 0.00318 0.00229 0.07879 0.00200 0.00145

GSD CS f 0.11420 0.00198 0.00143 0.11889 0.00299 0.00225 0.11808 0.00159 0.00092

GSD CS hsp 0.07418 0.00248 -0.00019 0.07467 0.00326 0.00086 0.08214 0.00218 -0.00116

GSD CS m 0.12437 0.00222 0.00163 0.14057 0.00313 0.00293 0.11543 0.00188 0.00066

GSD CS nam 0.07908 0.00324 -0.00055 0.08150 0.00439 0.00013 0.08306 0.00236 -0.00096

GSD CS wht 0.09295 0.00205 0.00153 0.10619 0.00309 0.00213 0.08723 0.00164 0.00117

GSD CS mfg 0.00550 0.00012 0.00006 0.00543 0.00009 0.00003 0.00726 0.00016 0.00020

GSD CS wag 0.07389 0.00121 0.00076 0.08298 0.00142 0.00077 0.06994 0.00106 0.00089

GSD CS wbg 0.05351 0.00072 0.00126 0.05514 0.00084 0.00182 0.05413 0.00064 0.00073

GSD CS whg 0.04610 0.00074 0.00049 0.04583 0.00075 0.00109 0.04941 0.00079 -0.00023

GSD GCS all 1.22844 0.02301 0.04534 1.31389 0.03786 0.10785 1.25258 0.01885 -0.00810

GSD GCS asn 1.64260 0.02342 0.05363 1.80836 0.03775 0.14361 1.64213 0.02000 -0.01552

GSD GCS blk 0.75371 0.02521 0.03532 0.77895 0.03468 0.07150 0.82639 0.02091 0.00319

GSD GCS f 1.14097 0.02103 0.04058 1.16545 0.03468 0.09476 1.23848 0.01678 -0.00775

GSD GCS hsp 0.73619 0.02485 0.01411 0.72976 0.03380 0.05530 0.86276 0.02347 -0.02466

GSD GCS m 1.23901 0.02359 0.04570 1.37686 0.03754 0.11386 1.21079 0.01992 -0.01022

GSD GCS nam 0.78209 0.03185 0.01231 0.79322 0.04322 0.05405 0.87316 0.02552 -0.02283

GSD GCS wht 0.92914 0.02164 0.03843 1.04118 0.03504 0.08626 0.91484 0.01713 -0.00068

GSD GCS mfg 0.05532 0.00125 0.00177 0.05285 0.00109 0.00349 0.07584 0.00167 0.00119

GSD GCS wag 0.73492 0.01300 0.02467 0.81246 0.01703 0.05649 0.73170 0.01106 -0.00088

GSD GCS wbg 0.53025 0.00765 0.02398 0.53919 0.01170 0.05005 0.56784 0.00671 -0.00027

GSD GCS whg 0.45891 0.00759 0.01484 0.45003 0.00974 0.03804 0.51819 0.00840 -0.00992

County CS all 0.05916 0.00118 0.00033 0.06845 0.00179 0.00088 0.05583 0.00101 0.00003

County CS asn 0.11471 0.00194 0.00144 0.12985 0.00239 0.00296 0.11050 0.00183 0.00053

County CS blk 0.04639 0.00159 0.00040 0.05143 0.00217 0.00084 0.04715 0.00132 0.00013

County CS f 0.05432 0.00115 0.00046 0.06071 0.00174 0.00091 0.05470 0.00096 0.00028

County CS hsp 0.03820 0.00164 -0.00117 0.04172 0.00218 -0.00032 0.04235 0.00150 -0.00187

County CS m 0.06539 0.00122 0.00027 0.07738 0.00175 0.00097 0.05935 0.00108 -0.00015

County CS nam 0.07598 0.00227 -0.00099 0.07795 0.00287 -0.00049 0.08114 0.00193 -0.00143

County CS wht 0.04517 0.00114 0.00031 0.05672 0.00176 0.00091 0.03935 0.00095 -0.00003

County CS mfg 0.00393 0.00008 0.00002 0.00380 0.00006 -0.00001 0.00574 0.00011 0.00017

County CS wag 0.08266 0.00128 0.00249 0.08902 0.00140 0.00278 0.08148 0.00126 0.00243

County CS wbg 0.05218 0.00061 0.00151 0.05440 0.00079 0.00232 0.05209 0.00053 0.00081

County CS whg 0.04887 0.00061 0.00109 0.04927 0.00066 0.00193 0.05187 0.00065 0.00014

County GCS all 0.59082 0.01260 0.01775 0.67144 0.02023 0.05105 0.58588 0.01082 -0.00804

County GCS asn 1.13821 0.02085 0.04049 1.27245 0.02934 0.10564 1.15619 0.01959 -0.01043

County GCS blk 0.46152 0.01607 0.01481 0.50183 0.02247 0.04014 0.49516 0.01404 -0.00591

County GCS f 0.54228 0.01226 0.01766 0.59658 0.01943 0.04669 0.57391 0.01020 -0.00525

County GCS hsp 0.37783 0.01615 -0.00316 0.40498 0.02102 0.02330 0.44569 0.01656 -0.02626

County GCS m 0.65110 0.01301 0.01880 0.75813 0.02021 0.05704 0.62292 0.01159 -0.01046

County GCS nam 0.75061 0.02171 0.00575 0.75397 0.02759 0.04323 0.85426 0.02120 -0.02693

County GCS wht 0.44921 0.01209 0.01463 0.55691 0.01953 0.04435 0.41308 0.01017 -0.00624

County GCS mfg 0.03984 0.00080 0.00109 0.03710 0.00068 0.00230 0.05990 0.00117 0.00089

County GCS wag 0.82376 0.01455 0.04459 0.87330 0.01881 0.07916 0.85150 0.01303 0.01381

County GCS wbg 0.51805 0.00667 0.02505 0.53216 0.01157 0.05395 0.54621 0.00550 0.00087

County GCS whg 0.48710 0.00656 0.02085 0.48581 0.00992 0.04811 0.54385 0.00692 -0.00621

Identifiers Pooled Math ELA
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Table 9. CZ and Metro Variances and Covariances 

 

Note:  GSD = Geographic district; CZ = Commuting zone; CS = cohort scale; GCS = grade-cohort scale; wht = white; 
blk = black; hsp = Hispanic; asn = Asian; m = male; f = female; wag = white-Asian gap; wbg = white-black gap; whg = 
white-Hispanic gap; mfg = male-female gap; tau = variance; rel = reliability 

  

Unit Metric Subgroup tau(int) tau(grd) cov(int,grd) tau(int) tau(grd) cov(int,grd) tau(int) tau(grd) cov(int,grd)

CZ CS all 0.04371 0.00068 -0.00015 0.04844 0.00099 0.00015 0.04402 0.00062 -0.00039

CZ CS asn 0.10533 0.00193 0.00149 0.11778 0.00246 0.00340 0.10141 0.00190 0.00032

CZ CS blk 0.03406 0.00107 0.00053 0.03935 0.00135 0.00104 0.03301 0.00099 0.00005

CZ CS f 0.04058 0.00067 0.00003 0.04315 0.00095 0.00028 0.04398 0.00063 -0.00009

CZ CS hsp 0.02380 0.00097 -0.00083 0.02743 0.00125 -0.00019 0.02628 0.00098 -0.00129

CZ CS m 0.04824 0.00068 -0.00025 0.05515 0.00096 0.00009 0.04620 0.00062 -0.00045

CZ CS nam 0.06789 0.00177 -0.00076 0.06554 0.00221 -0.00023 0.07730 0.00163 -0.00140

CZ CS wht 0.02489 0.00066 0.00011 0.03341 0.00098 0.00040 0.02080 0.00059 -0.00009

CZ CS mfg 0.00293 0.00005 0.00000 0.00265 0.00005 -0.00002 0.00459 0.00008 0.00013

CZ CS wag 0.09367 0.00158 0.00342 0.10339 0.00176 0.00468 0.08846 0.00158 0.00268

CZ CS wbg 0.04179 0.00047 0.00090 0.04493 0.00067 0.00178 0.04017 0.00039 0.00009

CZ CS whg 0.03422 0.00045 0.00088 0.03518 0.00051 0.00153 0.03590 0.00049 0.00014

CZ GCS all 0.43687 0.00726 0.00871 0.47429 0.01114 0.03125 0.46244 0.00679 -0.01057

CZ GCS asn 1.04500 0.01964 0.03813 1.14931 0.02851 0.10056 1.06205 0.02058 -0.01118

CZ GCS blk 0.33916 0.01106 0.01300 0.38438 0.01463 0.03389 0.34667 0.01053 -0.00435

CZ GCS f 0.40586 0.00723 0.00972 0.42329 0.01070 0.02942 0.46177 0.00682 -0.00752

CZ GCS hsp 0.23504 0.00948 -0.00331 0.26483 0.01202 0.01497 0.27675 0.01087 -0.01758

CZ GCS m 0.48110 0.00725 0.00915 0.53938 0.01105 0.03472 0.48535 0.00685 -0.01156

CZ GCS nam 0.67131 0.01658 0.00406 0.63241 0.02044 0.03616 0.81457 0.01821 -0.02563

CZ GCS wht 0.24846 0.00690 0.00785 0.32792 0.01078 0.02475 0.21856 0.00636 -0.00403

CZ GCS mfg 0.02987 0.00053 0.00059 0.02582 0.00056 0.00152 0.04787 0.00083 0.00066

CZ GCS wag 0.93173 0.01742 0.05626 1.01407 0.02345 0.10398 0.92435 0.01641 0.01501

CZ GCS wbg 0.41903 0.00495 0.01786 0.43799 0.00941 0.04319 0.42174 0.00426 -0.00474

CZ GCS whg 0.34397 0.00486 0.01606 0.34637 0.00766 0.03592 0.37641 0.00521 -0.00381

Metro CS all 0.04346 0.00083 0.00023 0.05038 0.00118 0.00048 0.04199 0.00077 0.00003

Metro CS asn 0.10567 0.00157 0.00089 0.11923 0.00205 0.00255 0.10203 0.00150 -0.00018

Metro CS blk 0.03705 0.00135 0.00089 0.04160 0.00181 0.00133 0.03762 0.00115 0.00043

Metro CS f 0.04124 0.00083 0.00037 0.04578 0.00117 0.00055 0.04295 0.00077 0.00033

Metro CS hsp 0.03095 0.00124 -0.00101 0.03481 0.00157 -0.00014 0.03417 0.00125 -0.00174

Metro CS m 0.04719 0.00087 0.00010 0.05635 0.00121 0.00048 0.04345 0.00080 -0.00019

Metro CS nam 0.05726 0.00209 -0.00118 0.05750 0.00260 -0.00134 0.06257 0.00195 -0.00123

Metro CS wht 0.03475 0.00082 0.00051 0.04416 0.00119 0.00089 0.03042 0.00074 0.00019

Metro CS mfg 0.00245 0.00006 0.00000 0.00231 0.00005 -0.00001 0.00415 0.00010 0.00015

Metro CS wag 0.08297 0.00108 0.00241 0.09149 0.00120 0.00327 0.07934 0.00108 0.00178

Metro CS wbg 0.04533 0.00054 0.00128 0.04808 0.00075 0.00211 0.04427 0.00046 0.00051

Metro CS whg 0.04104 0.00049 0.00090 0.04106 0.00055 0.00184 0.04421 0.00053 -0.00016

Metro GCS all 0.43534 0.00895 0.01272 0.49331 0.01342 0.03559 0.44058 0.00822 -0.00599

Metro GCS asn 1.05078 0.01676 0.03358 1.16632 0.02495 0.09433 1.06759 0.01632 -0.01671

Metro GCS blk 0.36846 0.01395 0.01710 0.40513 0.01928 0.03813 0.39464 0.01220 -0.00123

Metro GCS f 0.41324 0.00893 0.01340 0.44903 0.01320 0.03362 0.45048 0.00820 -0.00299

Metro GCS hsp 0.30525 0.01222 -0.00382 0.33690 0.01534 0.02009 0.35998 0.01391 -0.02359

Metro GCS m 0.47100 0.00926 0.01242 0.55111 0.01379 0.03913 0.45612 0.00866 -0.00852

Metro GCS nam 0.56501 0.01968 -0.00098 0.55526 0.02285 0.02252 0.65935 0.02142 -0.02217

Metro GCS wht 0.34735 0.00879 0.01401 0.43252 0.01369 0.03567 0.31946 0.00782 -0.00252

Metro GCS mfg 0.02501 0.00060 0.00052 0.02257 0.00052 0.00136 0.04324 0.00102 0.00097

Metro GCS wag 0.82684 0.01249 0.04457 0.89904 0.01731 0.08460 0.82852 0.01130 0.00705

Metro GCS wbg 0.45410 0.00587 0.02211 0.46955 0.01064 0.04822 0.46416 0.00479 -0.00101

Metro GCS whg 0.41043 0.00542 0.01684 0.40460 0.00858 0.04234 0.46365 0.00582 -0.00820

Identifiers Pooled Math ELA
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Table 10. GSE and County Reliabilities 

 

Note:  GSD = Geographic district; CZ = Commuting zone; CS = cohort scale; GCS = grade-cohort scale; wht = white; 
blk = black; hsp = Hispanic; asn = Asian; m = male; f = female; wag = white-Asian gap; wbg = white-black gap; whg = 
white-Hispanic gap; mfg = male-female gap; tau = variance; rel = reliability 

Unit Metric Subgroup rel(int) rel(grd) rel(int) rel(grd) rel(int) rel(grd)

GSD CS all 0.989 0.863 0.981 0.827 0.98 0.761

GSD CS asn 0.958 0.573 0.925 0.485 0.928 0.418

GSD CS blk 0.936 0.664 0.894 0.579 0.899 0.517

GSD CS f 0.985 0.819 0.974 0.779 0.975 0.69

GSD CS hsp 0.95 0.686 0.912 0.608 0.922 0.543

GSD CS m 0.986 0.829 0.976 0.777 0.975 0.716

GSD CS nam 0.899 0.564 0.832 0.475 0.845 0.369

GSD CS wht 0.982 0.829 0.972 0.788 0.969 0.707

GSD CS mfg 0.819 0.298 0.724 0.158 0.768 0.241

GSD CS wag 0.917 0.447 0.864 0.339 0.862 0.308

GSD CS wbg 0.911 0.434 0.856 0.334 0.86 0.308

GSD CS whg 0.917 0.437 0.859 0.313 0.869 0.33

GSD GCS all 0.988 0.867 0.981 0.849 0.981 0.765

GSD GCS asn 0.957 0.577 0.926 0.541 0.928 0.422

GSD GCS blk 0.936 0.668 0.894 0.602 0.899 0.518

GSD GCS f 0.985 0.824 0.974 0.804 0.976 0.693

GSD GCS hsp 0.95 0.686 0.912 0.623 0.922 0.55

GSD GCS m 0.986 0.834 0.976 0.806 0.975 0.72

GSD GCS nam 0.898 0.56 0.832 0.481 0.846 0.377

GSD GCS wht 0.982 0.832 0.972 0.809 0.969 0.709

GSD GCS mfg 0.82 0.303 0.723 0.184 0.768 0.238

GSD GCS wag 0.916 0.459 0.864 0.38 0.861 0.307

GSD GCS wbg 0.91 0.44 0.856 0.396 0.861 0.307

GSD GCS whg 0.916 0.439 0.859 0.366 0.869 0.333

County CS all 0.996 0.91 0.987 0.866 0.992 0.837

County CS asn 0.926 0.544 0.872 0.451 0.883 0.427

County CS blk 0.929 0.695 0.879 0.616 0.894 0.577

County CS f 0.994 0.882 0.981 0.834 0.988 0.789

County CS hsp 0.934 0.696 0.88 0.619 0.902 0.576

County CS m 0.994 0.883 0.983 0.825 0.989 0.799

County CS nam 0.888 0.547 0.821 0.458 0.842 0.406

County CS wht 0.991 0.882 0.977 0.836 0.982 0.794

County CS mfg 0.907 0.412 0.82 0.235 0.885 0.363

County CS wag 0.904 0.47 0.838 0.364 0.853 0.365

County CS wbg 0.93 0.543 0.876 0.454 0.895 0.42

County CS whg 0.94 0.523 0.883 0.409 0.907 0.419

County GCS all 0.996 0.914 0.987 0.881 0.992 0.843

County GCS asn 0.924 0.548 0.874 0.494 0.883 0.431

County GCS blk 0.929 0.696 0.881 0.628 0.895 0.582

County GCS f 0.994 0.886 0.982 0.851 0.989 0.794

County GCS hsp 0.934 0.693 0.88 0.622 0.903 0.586

County GCS m 0.994 0.887 0.984 0.846 0.989 0.806

County GCS nam 0.887 0.537 0.821 0.46 0.843 0.416

County GCS wht 0.991 0.884 0.978 0.851 0.983 0.801

County GCS mfg 0.908 0.42 0.82 0.264 0.885 0.363

County GCS wag 0.904 0.491 0.84 0.418 0.853 0.363

County GCS wbg 0.929 0.546 0.878 0.52 0.895 0.42

County GCS whg 0.939 0.527 0.884 0.486 0.908 0.423

Identifiers Pooled Math ELA
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Table 11. CZ and Metro Reliabilities 

 

Note:  GSD = Geographic district; CZ = Commuting zone; CS = cohort scale; GCS = grade-cohort scale; wht = white; 
blk = black; hsp = Hispanic; asn = Asian; m = male; f = female; wag = white-Asian gap; wbg = white-black gap; whg = 
white-Hispanic gap; mfg = male-female gap; tau = variance; rel = reliability 

Unit Metric Subgroup rel(int) rel(grd) rel(int) rel(grd) rel(int) rel(grd)

CZ CS all 0.998 0.929 0.995 0.902 0.996 0.877

CZ CS asn 0.94 0.621 0.9 0.546 0.904 0.515

CZ CS blk 0.927 0.71 0.893 0.645 0.89 0.622

CZ CS f 0.996 0.906 0.992 0.873 0.993 0.845

CZ CS hsp 0.952 0.758 0.919 0.693 0.923 0.664

CZ CS m 0.997 0.902 0.993 0.864 0.993 0.836

CZ CS nam 0.902 0.594 0.848 0.52 0.865 0.478

CZ CS wht 0.993 0.906 0.988 0.877 0.986 0.843

CZ CS mfg 0.941 0.517 0.884 0.376 0.93 0.483

CZ CS wag 0.931 0.588 0.887 0.491 0.89 0.483

CZ CS wbg 0.934 0.604 0.897 0.548 0.9 0.492

CZ CS whg 0.961 0.649 0.927 0.552 0.935 0.549

CZ GCS all 0.998 0.931 0.995 0.914 0.996 0.885

CZ GCS asn 0.939 0.613 0.902 0.578 0.904 0.522

CZ GCS blk 0.926 0.712 0.894 0.662 0.89 0.627

CZ GCS f 0.996 0.91 0.992 0.888 0.993 0.852

CZ GCS hsp 0.951 0.754 0.918 0.694 0.924 0.675

CZ GCS m 0.997 0.905 0.993 0.881 0.994 0.846

CZ GCS nam 0.901 0.58 0.848 0.515 0.866 0.49

CZ GCS wht 0.993 0.905 0.989 0.889 0.986 0.85

CZ GCS mfg 0.941 0.526 0.884 0.401 0.93 0.484

CZ GCS wag 0.93 0.6 0.889 0.544 0.89 0.483

CZ GCS wbg 0.932 0.592 0.898 0.602 0.9 0.499

CZ GCS whg 0.96 0.645 0.928 0.623 0.935 0.555

Metro CS all 0.998 0.94 0.995 0.916 0.996 0.893

Metro CS asn 0.951 0.578 0.914 0.499 0.911 0.452

Metro CS blk 0.948 0.744 0.918 0.683 0.917 0.631

Metro CS f 0.997 0.927 0.994 0.9 0.995 0.873

Metro CS hsp 0.97 0.8 0.949 0.741 0.948 0.707

Metro CS m 0.997 0.926 0.994 0.895 0.994 0.87

Metro CS nam 0.882 0.576 0.824 0.493 0.831 0.45

Metro CS wht 0.996 0.923 0.992 0.896 0.991 0.865

Metro CS mfg 0.952 0.543 0.901 0.345 0.945 0.512

Metro CS wag 0.939 0.511 0.893 0.406 0.889 0.396

Metro CS wbg 0.954 0.613 0.923 0.546 0.923 0.482

Metro CS whg 0.975 0.664 0.953 0.563 0.955 0.559

Metro GCS all 0.998 0.942 0.995 0.927 0.996 0.9

Metro GCS asn 0.95 0.58 0.914 0.541 0.911 0.459

Metro GCS blk 0.948 0.747 0.918 0.698 0.917 0.635

Metro GCS f 0.997 0.93 0.994 0.912 0.995 0.878

Metro GCS hsp 0.969 0.796 0.949 0.744 0.949 0.718

Metro GCS m 0.997 0.929 0.994 0.909 0.995 0.877

Metro GCS nam 0.881 0.564 0.824 0.48 0.832 0.46

Metro GCS wht 0.995 0.923 0.992 0.91 0.991 0.87

Metro GCS mfg 0.953 0.542 0.9 0.367 0.945 0.512

Metro GCS wag 0.938 0.535 0.894 0.475 0.889 0.396

Metro GCS wbg 0.953 0.609 0.924 0.609 0.923 0.484

Metro GCS whg 0.974 0.666 0.953 0.649 0.956 0.567

Identifiers Pooled Math ELA
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Table 12. School Pooling Model Variances and Covariances  

 

Note: CS = cohort scale; GCS = grade-cohort scale 

 

 

 

  

Unit Metric Subgroup tau(int) tau(grd) cov(int,grd) tau(int) tau(grd) cov(int,grd) tau(int) tau(grd) cov(int,grd)

School CS all 0.20433 0.00437 0.00268 0.21708 0.00653 0.00512 0.20113 0.00320 0.00068

School GCS all 2.01802 0.04495 0.07390 2.03390 0.07005 0.17465 2.13233 0.03432 -0.02105

Identifiers Pooled Math ELA
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Table 13. School Pooling Model Reliabilities 

 

Note: CS = cohort scale; GCS = grade-cohort scale 

  

Unit Metric Subgroup rel(int) rel(grd) rel(int) rel(grd) rel(int) rel(grd)

School CS all 0.975 0.697 0.96 0.642 0.963 0.515

School GCS all 0.975 0.704 0.959 0.666 0.964 0.526

Identifiers Pooled Math ELA
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Table 14. Suppressed Estimates by Unit Post-Estimation, Long Form Data for GSDs, Counties CZs, and Metros 

 

  

Cases Dropped Post Estimation Districts  (dygbr) Counties Metro Commuting Zone

Drop if cs_sdse > 2 14,007 (0.17%) 51,969 (2.48%) 10912 (1.62%) 7,206 (1.51%)

Drop if cs_mnse > 2 14,803 (0.18%) 120 (0.01%) 29 (0.00%) 16 (0.00%)

Suppress if alt asmt  > 20% 15,584 (0.19%) 503 (0.02%) 102 (0.02%) 0 (0.00%)

Drop if small (totgrd <20) 2,779,477 (34.10%) 337,327 (16.10%) 81,400 (12.05%) 49,012 (10.27%)

Resulting total cases in SEDA Long Files 5,354,173 (67.50%) 1,712,869 (81.73%) 583,238 (86.33%) 420,940 (88.22%)

Cases going into estimation 8,149,877 (100.00%) 2,095,764 (100.00%) 675,553 (100.00%) 477,160 (100.00%)
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Table 15. Component Loadings and Summary Statistics for Socioeconomic Status Composite Construction. 

 

 

 

  

Standardized 

Loadings

Unstandardized 

Loadings
Mean SD

log(Median Family Income) 0.904 0.641 10.899 0.329

% with BA or Higher 0.721 1.227 0.28 0.137

Poverty Rate -0.921 -1.892 0.195 0.113

SNAP Eligibility Rate -0.925 -2.997 0.121 0.072

Unemployment Rate -0.778 -5.13 0.095 0.035

Single Mother Headed Household Rate -0.805 -2.333 0.195 0.08
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Table 16. Summary Statistics at Different Values of the Socioeconomic Status Composite. 

below -2.5 -2.5 to -1.5 -1.5 to -.5 -.5 to .5 .5 to 1.5 1.5 to 2.5 above 2.5

log(Median Family Income) 10.22 10.43 10.64 10.84 11.18 11.58 12.10

% with BA or Higher 0.12 0.15 0.20 0.24 0.36 0.58 0.80

Poverty Rate 0.47 0.38 0.28 0.19 0.09 0.04 0.02

SNAP Eligibility Rate 0.36 0.26 0.18 0.11 0.06 0.03 0.01

Unemployment Rate 0.19 0.14 0.11 0.09 0.07 0.05 0.05

Single Mother Headed Household Rate 0.43 0.33 0.25 0.19 0.14 0.10 0.07

SES Composite
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Figures 

 

Figure 1. SEDA 3.0 Construction Process. 
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Appendices 

Appendix A: Additional Detail on Statistical Methods 

1. Estimating County-Level Means and Standard Deviations 

This section briefly describes how means, standard deviations, and standard errors are 

estimated for counties and metros. As described above, we first estimate GSD-level means and 

standard deviations. We then estimate the county, CZ, and metro means as weighted averages 

of the GSD means and the county, CZ, and metro standard deviations as estimates of total 

variance within a county, CZ, or metro based on the GSD means and standard deviations.  

The county, CZ, and metro aggregates are estimated within subjects, grades, and years. 

Let �̂�𝑑 and �̂�𝑑 be the estimated means and standard deviations for the 𝐷 GSD units 𝑑 = 1, …, 

that will be aggregated for a given county, CZ, or metro. We also have estimates of the standard 

errors for each mean and standard deviation, 𝑠𝑒(�̂�𝑑) and 𝑠𝑒(�̂�𝑑). We do not include grade, 

subject, year, or state subscripts here for clarity. 

We estimate aggregate county, CZ, or metro means independently for each aggregate 

unit. To estimate the aggregate parameters we make the simplifying assumption that 

𝑐𝑜𝑣(�̂�𝑖 , �̂�𝑗) = 𝑐𝑜𝑣(�̂�𝑖 , �̂�𝑗) = 𝑐𝑜𝑣(�̂�𝑖, �̂�𝑖) = 0 for 𝑖 ≠ 𝑗. The derivations for these expressions are 

based on the formulas in the appendix of Reardon et al. (2017) used to estimate to overall mean 

and variance of a set of groups in the HETOP model. Let  

𝑝𝑑 =
𝑛𝑑

∑ 𝑛𝑑
𝐷
𝑑=1

=
𝑛𝑑

𝑁𝑐
 

be the proportion of all students in the aggregate unit 𝑐 that are in GSD 𝑑. We estimate the 

aggregate mean for aggregate unit 𝑐 as the weighted average of the GSD estimated means, 

�̂�𝑐 = ∑ 𝑝𝑑�̂�𝑑

𝐷

𝑑=1

, 

with an estimated standard error of 

𝑠𝑒(�̂�𝑐) = √∑[𝑝𝑑
2 ∙ 𝑠𝑒(�̂�𝑑)2]

𝐷

𝑑=1

. 
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We estimate the standard deviation for aggregate unit 𝑎 as the square root of the sum of 

the estimated between and within-GSD variance, 

�̂�𝑐 = √∑[𝑝𝑑(�̂�𝑑 − �̂�𝑐)2 + 𝑞𝑑�̂�𝑑
2]

𝐷

𝑑=1

, 

with the associated estimated standard error 

𝑠𝑒(�̂�𝑐) = √𝑧𝑐 ∗ (
1

�̂�𝑐
). 

In these expressions we define 

𝑞𝑑 = (
𝑝𝑑 + (𝑛𝑑 − 1)

𝑛𝑑
) (

𝑝𝑑

1 + 2 (
1

2�̃�𝑐
)
), 

�̃�𝑐 = [(
1

𝐷
)∑ (

1

𝑛𝑑 − 1
)

𝐷

𝑑=1

]

−1

, 

and 

𝑧𝑐 = ∑[(𝑝𝑑
2(�̂�𝑑 − �̂�𝑐)

2𝑠𝑒(�̂�𝑑)2) + (𝑞𝑑
2 ∙ �̂�𝑑

2 ∙ 𝑠𝑒(�̂�𝑑)2)]

𝐷

𝑑=1

. 
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2. Constructing OLS Standard Errors from Pooled Models 

In the SEDA 3.0 data, we release the OLS and EB estimates of the intercept and grade 

slope, as well as their standard errors, from the pooled models described in Section 9. The 

recovery of the OLS SEs is not straightforward from HLM. In order to recover these, we perform 

the estimation in two steps and calculate the OLS SEs post-estimation. 

The remainder of this section describes the method and computational implementation. 

The equations are written to correspond to the pooling model shown in equation 9.2; however, 

this procedure is the same for the other variant of our pooling models. 

Step 1. We estimate 𝜎2 using the three-level model described in equation 9.2 and define: 

 �̂�𝑑𝑟𝑦𝑔𝑏
2 = �̂�2 + 𝜔𝑑𝑟𝑦𝑔𝑏

2  (A-2.1) 

Where 𝜔𝑑𝑟𝑦𝑔𝑏
2  is the variance of the �̂�𝑑𝑟𝑦𝑔𝑏

𝑥  estimate (either 𝜇 or 𝜎). We assume that �̂�2 is a 

very precise estimate because of the large amount of data in the model.  

Step 2. We then reweight the data and estimate a two-level HLM model: 

Level-1: 

�̂�𝑑𝑟𝑦𝑔𝑏
−1 �̂�𝑑𝑟𝑦𝑔𝑏

𝑥 = [𝛽0𝑑 𝛽1𝑑    𝛽2𝑑 𝛽3𝑑]

[
 
 
 
 

�̂�𝑑𝑟𝑦𝑔𝑏
−1

�̂�𝑑𝑟𝑦𝑔𝑏
−1 (𝑐𝑜ℎ𝑜𝑟𝑡𝑑𝑟𝑦𝑔𝑏 − 2006.5)

�̂�𝑑𝑟𝑦𝑔𝑏
−1 (𝑔𝑟𝑎𝑑𝑒𝑑𝑟𝑦𝑔𝑏 − 5.5)

�̂�𝑑𝑟𝑦𝑔𝑏
−1 (𝑚𝑎𝑡ℎ𝑑𝑟𝑦𝑔𝑏 − .5) ]

 
 
 
 

+ �̂�𝑑𝑟𝑦𝑔𝑏
−1 𝑒𝑑𝑟𝑦𝑔𝑏 

Level-2: 

𝛽0𝑑 = 𝛾00 + 𝜈0𝑑 

𝛽0𝑑 = 𝛾10 + 𝜈1𝑑 

𝛽0𝑑 = 𝛾20 + 𝜈2𝑑 

𝛽0𝑑 = 𝛾30 + 𝜈3𝑑 

 

(A-2.2) 

After estimation, the HLM residual file contains the OLS and EB estimates, as well as the 

posterior variance matrices, 𝑽𝑑
𝐸𝐵, for each GSD. From the model, we also recover an estimate of 

𝝉2. Using 𝑽𝑑
𝐸𝐵 and �̂�2, we can calculate the standard errors of the OLS estimates for each GSD as 

the inverse of: 
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 (𝑽𝑑
𝑂𝐿𝑆)−1 = (𝑽𝑑

𝐸𝐵)−1 − �̂�−2. (A-2.3) 
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Appendix B: Covariates 

1. List of Raw ACS Tables Used for SES Composite  

 

Table Description Table ID Universe Description Usage Derived Construct

Median household income B19013 Households 

median family income in the 

past 12 months

we adjust the reported median 

income for inflation (2012 

constant dollars) Median Income

Median household income B19013B

Families with a householder 

who is Black or African 

American alone

median family income in the 

past 12 months

we adjust the reported median 

income for inflation (2012 

constant dollars) White Median Income

Median household income B19013H

Families with a householder 

who is white alone (not 

Hispanic or Latino)

median family income in the 

past 12 months

we adjust the reported median 

income for inflation (2012 

constant dollars) Hispanic Median Income

Median household income B19013I

Families with a householder 

who is Hispanic or Latino

median family income in the 

past 12 months

we adjust the reported median 

income for inflation (2012 

constant dollars) Black Median Income

Sex by Educational 

Attainment for the 

Population 25 and Older B15002 Population 25 years and over

counts of number of 

individuals that fall into each 

of 16 educational attainment 

categories, by sex

we use the counts of men and 

women with a bachelor's degree 

or higher along with the total 

count to generate the BA+ rate Bachelor's Degree Rate

Sex by Educational 

Attainment for the 

Population 25 and Older C15002B

Black or African American 

alone population 25 years and 

over

counts of number of 

individuals that fall into each 

of 4 educational attainment 

categories, by sex

we use the counts of men and 

women with a bachelor's degree 

or higher along with the total 

count to generate the BA+ rate

Black Bachelor's Degree 

Rate

Sex by Educational 

Attainment for the 

Population 25 and Older C15002H

White alone, not Hispanic or 

Latino population 25 years 

and over

counts of number of 

individuals that fall into each 

of 4 educational attainment 

categories, by sex

we use the counts of men and 

women with a bachelor's degree 

or higher along with the total 

count to generate the BA+ rate

White Bachelor's Degree 

Rate

Sex by Educational 

Attainment for the 

Population 25 and Older C15002I

Hispanic or Latino population 

25 years and over

counts of number of 

individuals that fall into each 

of 4 educational attainment 

categories, by sex

we use the counts of men and 

women with a bachelor's degree 

or higher along with the total 

count to generate the BA+ rate

Hispanic Bachelor's 

Degree Rate
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Poverty Status in the Last 

12 Months by Age B17020

Population for whom poverty 

status is determined

counts of number of 

individuals living in 

households above and below 

the poverty line in various 

age bins

we use the counts of those living 

in poverty that are school aged (6-

17 years old)

Poverty Rate, 6-17 Year 

Olds

Poverty Status in the Last 

12 Months by Age B17020B

Black or African American 

alone population for whom 

poverty status is determined

counts of number of 

individuals living in 

households above and below 

the poverty line in various 

age bins

we use the counts of those living 

in poverty that are school aged (6-

17 years old)

Black Poverty Rate, 6-17 

Year Olds

Poverty Status in the Last 

12 Months by Age B17020H

White alone, not Hispanic or 

Latino population for whom 

poverty status is determined

counts of number of 

individuals living in 

households above and below 

the poverty line in various 

age bins

we use the counts of those living 

in poverty that are school aged (6-

17 years old)

White Poverty Rate, 6-

17 Year Olds

Poverty Status in the Last 

12 Months by Age B17020I

Hispanic or Latino population 

for whom poverty status is 

determined

counts of number of 

individuals living in 

households above and below 

the poverty line in various 

age bins

we use the counts of those living 

in poverty that are school aged (6-

17 years old)

Hispanic Poverty Rate, 6-

17 Year Olds

Sex by Age by Employment 

Status for the Population 

16 and Over B23001 Population 25 to 64 years

counts of individuals by age, 

labor market status and 

employment status

we use the count of those 

employed divided by the count of 

those in the labor market for 

civilians ages 16-64 to compute 

an unemployment rate Unemployment Rate

Sex by Age by Employment 

Status for the Population 

16 and Over C23002B

Black or African American 

alone, not Hispanic or Latino 

population 16 years and over

counts of individuals by age, 

labor market status and 

employment status

we use the count of those 

employed divided by the count of 

those in the labor market for 

civilians ages 16-64 to compute 

an unemployment rate

Black Unemployment 

Rate

Sex by Age by Employment 

Status for the Population 

16 and Over C23002H

White alone, not Hispanic or 

Latino population 16 years 

and over

counts of individuals by age, 

labor market status and 

employment status

we use the count of those 

employed divided by the count of 

those in the labor market for 

civilians ages 16-64 to compute 

an unemployment rate

White Unemployment 

Rate

Sex by Age by Employment 

Status for the Population 

16 and Over C23002I

Hispanic or Latino population 

16 years and over

counts of individuals by age, 

labor market status and 

employment status

we use the count of those 

employed divided by the count of 

those in the labor market for 

civilians ages 16-64 to compute 

an unemployment rate

Hispanic Unemployment 

Rate
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Receipt of Food 

Stamps/SNAP in the past 

12 months by poverty 

status in the past 12 

months for households B22003 Households

counts of households 

receiving food stamps/SNAP 

benefits by poverty status

we use the counts of households 

receiving SNAP divided by the 

total number of households to 

compute the SNAP rate SNAP Rate

Receipt of Food 

Stamps/SNAP in the past 

12 months by poverty 

status in the past 12 

months for households B22005B

Households with a 

householder who is Black or 

African American alone

counts of households 

receiving food stamps/SNAP 

benefits by poverty status

we use the counts of households 

receiving SNAP divided by the 

total number of households to 

compute the SNAP rate Black SNAP Rate

Receipt of Food 

Stamps/SNAP in the past 

12 months by poverty 

status in the past 12 

months for households B22005H

Households with a 

householder who is White 

alone, not Hispanic or Latino

counts of households 

receiving food stamps/SNAP 

benefits by poverty status

we use the counts of households 

receiving SNAP divided by the 

total number of households to 

compute the SNAP rate White SNAP Rate

Receipt of Food 

Stamps/SNAP in the past 

12 months by poverty 

status in the past 12 

months for households B22005I

Households with a 

householder who is Hispanic 

or Latino

counts of households 

receiving food stamps/SNAP 

benefits by poverty status

we use the counts of households 

receiving SNAP divided by the 

total number of households to 

compute the SNAP rate Hispanic SNAP Rate

Household Type B11001 Households

counts of different types of 

households

we use the count of family 

households with a female 

householder, no husband 

present divided by the total 

number of family households

Female Headed 

Household Rate

Household Type B11001B

Households with a 

householder who is Black or 

African American alone, not 

Hispanic or Latino

counts of different types of 

households

we use the count of family 

households with a female 

householder, no husband 

present divided by the total 

number of family households

Black Female Headed 

Household Rate

Household Type B11001H

Households with a 

householder who is White 

alone, not Hispanic or Latino

counts of different types of 

households

we use the count of family 

households with a female 

householder, no husband 

present divided by the total 

number of family households

White Female Headed 

Household Rate

Household Type B11001I

Households with a 

householder who is Hispanic 

or Latino

counts of different types of 

households

we use the count of family 

households with a female 

householder, no husband 

present divided by the total 

number of family households

Hispanic Female Headed 

Household Rate



 
 

72 
 

2. Measurement Error, Attenuation Bias and Solutions 

Formally, attenuation bias can be specified as follows. As an example, consider the true 

relationship between race-specific achievement and socioeconomic status we would like to 

estimate: 

𝑌𝑔 = 𝛽0𝑔 + 𝛽1𝑔(𝑆𝐸𝑆𝑔) + 𝜀𝑔     (B-2.1) 

Where Y is white or non-white minority achievement in a unit (district, county, or 

metropolitan area) (g indexes group), and SES is the average socioeconomic status of the group. 

Race specific SES is measured with error and measurement error will be larger in units with 

relatively smaller sample sizes of non-white minorities. Thus, the data we observe are 𝑊𝑔 =

𝑆𝐸𝑆𝑔 + 𝜀𝑔. In this case, the bias in 𝛽1𝑔is known as attenuation bias. This bias can by quantified 

by multiplying by the variable’s reliability 𝜆 =  
𝑣𝑎𝑟(𝑆𝐸𝑆𝑔)

𝑣𝑎𝑟(𝑆𝐸𝑆𝑔)+𝜎1
2, i.e. the true variance of the variable 

𝑆𝐸𝑆𝑔 relative to the true variance plus the variance of the measurement error.  

 To address attenuation bias, we use regression calibration, which makes use of the fact 

that the measurement error in 𝑆𝐸𝑆𝑔 (and consequently 𝑆𝐸𝑆𝐺𝑎𝑝) are known from Census data.11 

Regression calibration is a method that replaces the error-prone variable 𝑊 with its best linear 

prediction (blp). The best linear predictor of 𝑆𝐸𝑆𝐺𝑎𝑝 can be defined as: 

𝑆𝐸𝑆𝑝𝑔
𝑏𝑙𝑝 = 𝐸(𝑆𝐸𝑆𝑔) +

𝑐𝑜𝑣(𝑆𝐸𝑆𝑔, 𝑊𝑔)

𝑣𝑎𝑟(𝑊𝑔)
(𝑊𝑔 − 𝐸(𝑊𝑔)) 

= 𝜇 +
𝑐𝑜𝑣(𝑆𝐸𝑆𝑔, 𝑆𝐸𝑆𝑔 + 𝜀𝑔)

𝜎𝑆𝐸𝑆𝑔

2 + 𝜎𝑔
2

(𝑊𝑔 − 𝜇) 

 
11 Specifically, the ACS reports margins of error which can be easily converted standard errors for each Census 

variable. Appendix B3: Computing the sampling variance of sums of ACS variables provides a full description of 

how standard errors for cross-tabulated Census data are constructed. 
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 = 𝜇 + 𝜆(𝑊𝑔 − 𝜇)       (B-2.2) 

Note that 𝑆𝐸𝑆𝑔
𝑏𝑙𝑝is “shrunken” towards the mean value of 𝑆𝐸𝑆𝑔 as a function of 𝜆 which, recall, 

is equal to the reliability of the variable 𝑆𝐸𝑆𝑔 and can be estimated as a random effect (or 

empirical Bayes estimate) from a generalized linear model.  

 Now, we show that regressing 𝑌𝑔 on 𝑆𝐸𝑆𝑔
𝑏𝑙𝑝results in consistent estimates of 𝛽1𝑔.  

𝑐𝑜𝑣 (𝑌𝑔, 𝜇 + 𝜆(𝑊𝑔 − 𝜇))

𝑣𝑎𝑟 (𝜇 + 𝜆(𝑊𝑔 − 𝜇))
=

𝑐𝑜𝑣(𝑌𝑔, 𝜆𝑊𝑔)

𝜆2 (𝜎𝑆𝐸𝑆𝑔

2 + 𝜎𝑔
2)

 

=
𝑐𝑜𝑣(𝑌𝑔, 𝑆𝐸𝑆𝑔)

𝜆 (𝜎𝑆𝐸𝑆𝑔

2 + 𝜎𝑔
2)

 

=
𝑐𝑜𝑣(𝑌𝑔 , 𝑆𝐸𝑆𝑔)

𝜎𝑆𝐸𝑆𝑔

2 = 𝛽1𝑔  

(B-2.3)  
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3. Computing the sampling variance of sums of ACS variables  

In each unit we are given counts in 𝐾 cells: 𝑛1̂𝑑, 𝑛2̂𝑑, … , 𝑛�̂�𝑑; we also know total counts 

𝑡𝑑; we also have margins of error of the counts 

𝑀𝑜𝐸(𝑛1̂𝑑), 𝑀𝑜𝐸(𝑛2̂𝑑),… , 𝑀𝑜𝐸(𝑛�̂�𝑑). 

We then compute the sampling variances of the   

𝑣𝑎𝑟(𝑛�̂�𝑑) = [
𝑀𝑂𝐸(𝑛�̂�𝑑)

1.645
]

2

 

from these we compute 

𝑝�̂�𝑑 =
𝑛�̂�𝑑

𝑡𝑑
 

and  

𝑣𝑎𝑟(𝑝�̂�𝑑) =
𝑣𝑎𝑟(𝑛�̂�𝑑)

𝑡𝑑
2 . 

We do not know the sampling rate in unit 𝑑; let’s call it 𝑟𝑑. If the estimates come from a 

simple random sample, we would have  

𝑣𝑎𝑟(𝑝�̂�𝑑)
∗
=

𝑝𝑘𝑑(1 − 𝑝𝑘𝑑)

𝑟𝑑𝑡𝑑
 

The estimated design effect in district 𝑑 for variable 𝑘 is then  

𝐷�̂�𝑑 =
𝑣𝑎𝑟(𝑝�̂�𝑑)

𝑣𝑎𝑟(𝑝�̂�𝑑)
∗ 

We can compute the average design effect in unit 𝑑 as 

𝐷𝑑 =
1

𝐾
∑ 𝐷�̂�𝑑

𝐾

𝑘=1

 

Now we compute  



 
 

75 
 

�̂�𝑑 =
1

𝑡𝑑
∑ 𝑛�̂�𝑑

𝐾

𝑘=1

= ∑ 𝑝�̂�𝑑

𝐾

𝑘=1

 

We want to know 𝑣𝑎𝑟(�̂�𝑑). If we had a simple random sample, we would have  

𝑣𝑎𝑟(�̂�𝑑)
∗
=

𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

Given the design effect in unit 𝑑, however, we would expect this to be inflated by a factor 𝐷𝑑. 

So, we have: 

𝑣𝑎𝑟(�̂�𝑑) = 𝐷𝑑𝑣𝑎𝑟(�̂�𝑑)
∗
 

= 𝐷𝑑

𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

= [
1

𝐾
∑ 𝐷�̂�𝑑

𝐾

𝑘=1

]
𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

= [
1

𝐾
∑

𝑣𝑎𝑟(𝑝�̂�𝑑)

𝑣𝑎𝑟(𝑝�̂�𝑑)
∗

𝐾

𝑘=1

]
𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

= [
1

𝐾
∑

𝑟𝑑𝑡𝑑𝑣𝑎𝑟(𝑝�̂�𝑑)

𝑝𝑘𝑑(1 − 𝑝𝑘𝑑)

𝐾

𝑘=1

]
𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

= [
1

𝐾
∑

𝑣𝑎𝑟(𝑝�̂�𝑑)

𝑝𝑘𝑑(1 − 𝑝𝑘𝑑)

𝐾

𝑘=1

] 𝑃𝑑(1 − 𝑃𝑑) 

= [
1

𝐾
∑

1

𝑛𝑘𝑑

𝐾

𝑘=1

]𝑃𝑑(1 − 𝑃𝑑) 

=
1

�̃�𝑑
𝑃𝑑(1 − 𝑃𝑑) 

where 𝑛𝑘𝑑=
𝑝𝑘𝑑(1−𝑝𝑘𝑑)

𝑣𝑎𝑟(𝑝�̂�𝑑)
 is the effective sample size in cell 𝑘 in unit 𝑑 (the sample size 𝑛𝑘𝑑  such 

that 
𝑝𝑘𝑑(1−𝑝𝑘𝑑)

𝑛𝑘𝑑
= 𝑣𝑎𝑟(𝑝�̂�𝑑)), and �̃�𝑑 = (

1

𝐾
∑

1

𝑛𝑘𝑑

𝐾
𝑘=1 )

−1

 is the harmonic mean of the effective 
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sample sizes across cells within unit 𝑑. Note that 
�̃�𝑑

𝑡𝑑
= �̃�𝑑 is the harmonic mean of the effective 

sampling rate across cells within 𝑑. 

An alternate approach is to assume a common design effect across units 

𝑣𝑎𝑟(�̂�𝑑) = 𝐷𝑑𝑣𝑎𝑟(�̂�𝑑)
∗
 

= 𝐷𝑑

𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

= 𝐷
𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

where 𝐷 =
1

𝑇
∑ 𝑡𝑗𝐷𝑗

𝐽
𝑗=1  is the average design effect across units (weighted by unit size to 

increase precision). We can write 

𝐷 =
1

𝑇
∑𝑡𝑗𝐷𝑗

𝐽

𝑗=1

 

=
1

𝑇
∑𝑡𝑗 [

1

𝐾
∑

𝑟𝑗𝑡𝑗

𝑛𝑘𝑗

𝐾

𝑘=1

]

𝐽

𝑗=1

 

= ∑
𝑡𝑗

𝑇

𝑟𝑗

�̃�𝑗

𝐽

𝑗=1

 

So then, 

𝑣𝑎𝑟(�̂�𝑑) = 𝐷𝑑𝑣𝑎𝑟(�̂�𝑑)
∗
 

= 𝐷𝑑

𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

= 𝐷
𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
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= [∑
𝑡𝑗

𝑇

𝑟𝑗

�̃�𝑗

𝐽

𝑗=1

]
𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

= [∑
𝑡𝑗

𝑇

𝑟𝑗𝑡𝑑

�̃�𝑗𝑡𝑑

𝐽

𝑗=1

]
𝑃𝑑(1 − 𝑃𝑑)

𝑟𝑑𝑡𝑑
 

Assume 𝑟𝑗 is constant across units and assume the effective sampling rate in unit 𝑗 is 

independent of the unit size 𝑡𝑗; then this simplifies to 

𝑣𝑎𝑟(�̂�𝑑) =
𝑃𝑑(1 − 𝑃𝑑)

𝑡𝑑�̃�
, 

where  

�̃� = [∑
𝑡𝑗

𝑇

1

�̃�𝑗

𝐽

𝑗=1

]

−1

 

is the (weighted) harmonic mean of the effective sampling rates. We can compute �̃� without 

knowing the actual sampling rates: 

�̃� =

[
 
 
 
 

∑
𝑡𝑗

𝑇

1

1
𝑡𝑗

(
1
𝐾

∑
𝑣𝑎𝑟(𝑝�̂�𝑗)

𝑝𝑘𝑑(1 − 𝑝𝑘𝑗)
𝐾
𝑘=1 )

−1

𝐽

𝑗=1

]
 
 
 
 
−1

 

= [∑
𝑡𝑗
2

𝑇
(
1

𝐾
∑

𝑣𝑎𝑟(𝑝�̂�𝑗)

𝑝𝑘𝑑(1 − 𝑝𝑘𝑗)

𝐾

𝑘=1

)

𝐽

𝑗=1

]

−1

 

To recap, we have two approaches to compute the sampling variance of �̂�𝑑: 

1. For each unit, compute the harmonic mean of the effective sample size  

�̃�𝑑 = (
1

𝐾
∑

𝑣𝑎𝑟(𝑝�̂�𝑑)

𝑝𝑘𝑑(1 − 𝑝𝑘𝑑)

𝐾

𝑘=1

)

−1
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then  

𝑉𝑎𝑟(�̂�𝑑) =
𝑃𝑑(1 − 𝑃𝑑)

�̃�𝑑
. 

Or:  

2. Compute the weighted harmonic mean of the effective sampling rate across units (using 

any of these formulas, all identical): 

�̃� = [∑
𝑡𝑗

𝑇

1

�̃�𝑗

𝐽

𝑗=1

]

−1

 

= [∑
𝑡𝑑
2

𝑇
(
1

𝐾
∑

𝑣𝑎𝑟(𝑝�̂�𝑑)

𝑝𝑘𝑑(1 − 𝑝𝑘𝑑)

𝐾

𝑘=1

)

𝐷

𝑑=1

]

−1

 

= [
1

(1.6452)𝑇𝐾
∑ ∑

𝑀𝑜𝐸(𝑛�̂�𝑑)
2

𝑝𝑘𝑑(1 − 𝑝𝑘𝑑)

𝐾

𝑘=1

𝐽

𝑑=1

]

−1

 

then  

𝑉𝑎𝑟(�̂�𝑑) =
𝑃𝑑(1 − 𝑃𝑑)

�̃�𝑡𝑑
. 

 

 The first approach allows a different design effect in each unit, but the design effect is 

probably noisily estimated, so will have more noise in the estimated sampling variances. The 

second assumes a common design effect across units. Our decision criteria for generating 

sampling variances is as follows: 

1. When 𝐾 = 1 and 𝑃𝑑 > 0, use the sampling variance provided by ACS, i.e., 𝑣𝑎𝑟(�̂�𝑑) =

𝑣𝑎𝑟(�̂�𝑑)

𝑡𝑑
2  



 
 

79 
 

2. When 𝐾 = 1 and 𝑃𝑑 = 0, use the sampling variance method 2, i.e.,  𝑉𝑎𝑟(�̂�𝑑) =
𝑃𝑑(1−𝑃𝑑)

�̃�𝑡𝑑
, 

where 𝑃𝑑 =
1

𝑡𝑑
. 

3. When 𝐾 > 1 and 𝑃𝑑 > 0, use the sampling variance method 2, i.e., 𝑉𝑎𝑟(�̂�𝑑) =
𝑃𝑑(1−𝑃𝑑)

�̃�𝑡𝑑
 

4. When 𝐾 > 1 and 𝑃𝑑 = 0, use the sampling variance method 2, i.e., 𝑉𝑎𝑟(�̂�𝑑) =
𝑃𝑑(1−𝑃𝑑)

�̃�𝑡𝑑
, 

where 𝑃𝑑 =
1

𝑡𝑑
. 
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4. Estimating sampling variance of composite SES measures  

Let �̅�𝑑 be the vector of 6 variables we use to construct the SES composite in unit 𝑑. Let 

𝐖𝑑 be the diagonal matrix containing the standard errors of 𝐗𝑑.12  

Our estimated SES composite (𝑆) in unit 𝑑 is 

�̂�𝑑 = �̅�𝑑𝐁, 

where 𝐁 is a 6 × 1 vector of unstandardized coefficients. The sampling variance of �̂�𝑑 is 

𝑣𝑎𝑟(�̂�𝑑) = 𝐁′𝐕𝑑𝐁, 

where 𝐕𝑑 is the covariance matrix of 𝐗𝑑. We know the diagonal elements of 𝐕𝑑 (𝐖𝑑); but not 

the off-diagonals. We need to know 𝐕𝑑 to get the standard error of �̂�𝑑. How can we compute 

𝐕𝑑? 

Define 𝐑𝑑, the correlation matrix describing the correlations of the estimates 𝐗𝑑. If we 

knew 𝐑𝑑, then we can get  

𝐕𝑑 = 𝐖𝑑𝐑𝑑𝐖𝑑. 

The key is getting an estimate of 𝐑𝑑. We can use PUMS data to estimate 𝐑 empirically (via 

bootstrapped samples). We do this as follows: 

a. Set 𝑁 = 5,000, and 𝐽 = 1,000 (or some other values) 

b. Pick PUMA 𝑘. 

c. From all families in PUMA 𝑘, draw a random sample of 𝑁 families. 

 
12 Note that we get the standard errors of these variables from ACS. The exception is ln(median income), as we get a 

standard error for median income. Let �̂�𝑑 be the estimated median income in unit 𝑑. The Delta method gives us  

𝑠𝑒[ln(�̂�𝑑)] ≈
1

�̂�𝑑

𝑠𝑒(�̂�𝑑). 
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d. Compute 𝐗𝑘 from the micro-data (so if 𝐗 includes ln(median income), then 

estimate ln(median income) in PUMA 𝑘 from the sample, and likewise for the 

6 variables we include in 𝐗). 

e. Repeat (c) and (d) 𝐽 times for PUMA 𝑘. 

f. Estimate �̂�𝑘
𝐵 from the 𝐽 samples 

g. Repeat (b)-(f) for all PUMAs 𝑘 = 1,… ,𝐾. 

h. Repeat (b)-(g) for each race/ethnic group 𝑟 to get �̂�𝑘𝑟
𝐵 . We might need to set 

𝑁 = 1,000 for race-ethnic groups, because race samples are smaller in each 

PUMA.  

Next we examine how �̂�𝑘 and �̂�𝑘𝑟 vary across PUMAs and race/ethnic groups. If �̂�𝑘 and 

�̂�𝑘𝑟 are relatively constant across PUMAs and subgroups, we can just use a single common value 

of �̂� for all units and subgroups. We find that they are generally similar, so we use a common �̂� 

in all PUMAs.  

 

 

 


