
Validation methods for aggregate-level test scale linking:
A case study mapping school district test score 
distributions to a common scale

Linking score scales across different tests is considered speculative and fraught, even at the 

aggregate level (Feuer et al., 1999; Thissen, 2007). We introduce and illustrate validation 

methods for aggregate linkages, using the challenge of linking U.S. school district average 

test scores across states as a motivating example. We show that aggregate linkages can be 

validated both directly and indirectly under certain conditions, such as when the scores for at 

least some target units (districts) are available on a common test (e.g., the National 

Assessment of Educational Progress). We introduce precision-adjusted random effects 

models to estimate linking error, for populations and for subpopulations, for averages and

for progress over time. In this case, we conclude that the linking method is accurate enough 

to be used in analyses of national variation in district achievement, but that the small amount 

of linking error in the methods renders fine-grained distinctions among districts in different 

states invalid. We discuss how this approach may be applicable when the essential 

counterfactual question—“what would means/variance/progress for the aggregate units be, 

had students taken the other test?”—can be answered directly for at least some of the units.
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Validation methods for aggregate-level test scale linking: 

A case study mapping school district test score distributions to a common scale 

 

Abstract 

Linking score scales across different tests is considered speculative and fraught, even at the aggregate 

level (Feuer et al., 1999; Thissen, 2007). We introduce and illustrate validation methods for aggregate 

linkages, using the challenge of linking U.S. school district average test scores across states as a 

motivating example. We show that aggregate linkages can be validated both directly and indirectly under 

certain conditions, such as when the scores for at least some target units (districts) are available on a 

common test (e.g., the National Assessment of Educational Progress). We introduce precision-adjusted 

random effects models to estimate linking error, for populations and for subpopulations, for averages and 

for progress over time. In this case, we conclude that the linking method is accurate enough to be used in 

analyses of national variation in district achievement, but that the small amount of linking error in the 

methods renders fine-grained distinctions among districts in different states invalid. We discuss how this 

approach may be applicable when the essential counterfactual question—“what would 

means/variance/progress for the aggregate units be, had students taken the other test?”—can be 

answered directly for at least some of the units.  

Keywords: linking, scaling, multilevel modeling, achievement testing, NAEP 
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Introduction 

As educational testing programs proliferate, non-overlapping populations and incomparable 

scales can limit the scope of research about the correlates and causes of educational achievement. 

Linking is the psychometric solution to this problem. Common persons, common populations, or common 

items across tests form the basis for estimated linking functions (Kolen & Brennan, 2014). These functions 

can enable mappings of scores from various tests to a common scale, enabling large-scale research about 

educational achievement. However, the bases for these linkages—common persons, populations, or 

items—are not always available at a large scale. When they are available, methods for evaluating the 

linkage for the purpose of large-scale research, rather than student-level uses like diagnosis and selection, 

are still in development (Thissen, 2007).  

Dorans and Holland (2000) outline five requirements for equating: (1) equal constructs, (2) equal 

reliability, (3) examinee indifference between tests, and (4) a symmetrical linking function that is (5) 

invariant across populations. These requirements are only realistically met within testing programs, not 

across them. For linkages that do not meet the stringent conditions of equating, the appropriateness of 

the linkage becomes dependent on the interpretations and uses of the linked scores.  

We present a case of aggregate-level linking whose purpose is to support educational research. 

First, we show how a common assessment at one level of aggregation (the state, in our example) can 

serve as the basis for a common-population linkage. Second, we demonstrate how the assessment can 

directly validate the linkage on which it is based, if the assessment also reports scores at a lower level of 

aggregation (the school district, here). Third, we show how to validate inferences about progress over 

time in addition to inferences about relative achievement. Fourth, we show how additional assessments 

that are common across a subset of the lower-level units can provide indirect validation of the linking. 

Although none of the methods we present is new on its own, the logic and methods in this validation 

approach is likely to be useful in other aggregate linking scenarios.   
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A case comparing U.S. school district achievement across states 

To understand how a “patchwork” administration of tests can support aggregate linking, we 

present the case of linking U.S. school district average scores to a common scale. U.S. school districts 

differ dramatically in their socioeconomic and demographic characteristics (Reardon, Yun, & Eitle, 1999; 

Stroub & Richards, 2013), and districts have considerable influence over instructional and organizational 

practices that may affect academic achievement (Whitehurst, Chingos, & Gallaher, 2013). Nonetheless, 

we have relatively little rigorous large-scale research describing national patterns of variation in 

achievement across districts, let alone an understanding of the factors that cause this variation. Such 

analyses generally require district-level test score distributions that are comparable across states. No 

such nation-wide, district-level achievement dataset currently exists, because school districts do not 

administer a common set of assessments to all districts across states.  

Existing assessments enable some comparisons of academic performance across states or school 

districts, but none provides comprehensive comparisons across grades, years, and all school districts. At 

the highest level, the National Assessment of Educational Progress (NAEP) provides comparable state-

level scores in odd years, in reading and mathematics, in grades 4 and 8. NAEP also provides district-level 

scores, but only for a small number of  27 large urban districts under the Trial Urban District Assessment 

(TUDA) initiative: 18 districts in 2009, and 21 districts in 2011 and 2013. Within individual states, we can 

compare district achievement using state math and reading/English Language Arts (ELA) tests federally 

mandated by the No Child Left Behind (NCLB) act, administered annually in grades 3-8. Comparing 

academic achievement across state lines requires either that districts administer a common test, or that 

the scores on the state tests can be linked to a common scale. However, state accountability tests 

generally differ across states. Each state develops and administers its own tests; these tests may assess 

somewhat different content domains; scores are reported on different, state-determined scales; and 

proficiency thresholds are set at different levels of achievement. Moreover, the content, scoring, and 
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definition of proficiency may vary within any given state over time and across grades.  

As a result, direct comparisons of average scores or percentages of proficient students across 

states (or in many cases within states, across grades and years) are unwarranted and misleading. Average 

scores may differ because scales differ and because performance differs. Proficiency rates may differ 

because proficiency thresholds differ (Bandeira de Mello, Blankenship, & McLaughlin; Braun & Qian, 

2007) and because performance differs.  The ongoing rollout of common assessments developed by 

multistate assessment consortia (such as the Partnership for Assessment of Readiness for College and 

Careers, PARCC, and the Smarter Balanced Assessment Consortium, SBAC) is certainly increasing 

comparability across states, but only to the extent that states use these assessments. Customization of 

content standards by states may also discourage the reporting of results on a common scale across states 

(Gewertz, 2015; U.S. Department of Education, 2009). Given the incomplete, divided, and declining state 

participation in these consortia, comprehensive, directly comparable district-level test score data in the 

U.S. remain unavailable. 

In some cases, districts also administer voluntarily-chosen assessments, often for lower-stakes 

purposes. When two districts adopt the same such assessments, we can compare test scores on these 

assessments among districts. One of the most widely used assessments, the Measures of Academic 

Progress (MAP) test from Northwest Evaluation Association (NWEA), is voluntarily administered in several 

thousand school districts, over 20% of all districts in the country. However, the districts using MAP are 

neither a representative nor comprehensive sample of districts. 

 In this paper, we present a validation strategy for comparisons of district-level test scores across 

states, years, and grades. We rely on a combination of a) population-level state test score data from NAEP 

and state tests; b) linear transformations that link state test scores to observed and interpolated NAEP 

scales; and c) a set of validation checks to assess the accuracy of the resulting linked estimates. Together, 

this represents a suite of approaches for constructing and evaluating linked estimates of test score 
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distributions.  

We use data from the EDFacts Initiative (U.S. Department of Education, 2015), NAEP, and NWEA. 

We obtain population-level state testing data from EDFacts; these data include counts of students in 

ordered proficiency categories for each district-grade-year-subject combination. We fit heteroskedastic 

ordered probit (HETOP) models to these district proficiency counts, resulting in estimated district means 

and variances on a state standardized (zero mean and unit variance) scale (Reardon, Shear, Castellano, & 

Ho, 2016). We then apply linear linking methods that adjust for test reliability (reviewed by Kolen and 

Brennan, 2014) to place each district’s estimated score distribution parameters on a common national 

scale.  Our linking methods are similar to those that Hanushek and Woessman (2012) used to compare 

country-level performance internationally. At the district level (Greene & McGee, 2011) and school level 

(Greene & Mills, 2014), the Global Report Card (GRC) maps scores onto a national scale using proficiency 

rates, using a somewhat different approach than ours.1 What we add to these standard linear linking 

methods are direct and indirect validation methods that take advantage of patchwork reporting of test 

scores at the target levels of aggregation. 

Although some have argued that using NAEP as a basis for linking state accountability tests is 

both infeasible and inappropriate for high-stakes student-level reporting (Feuer, Holland, Green, 

Bertenthal, & Hemphill, 1999), our goal here is different. We do not attempt to estimate student-level 

scores, and we do not intend the results to be used for high-stakes accountability. Rather, our goal is to 

estimate transformations that render aggregate test score distributions roughly comparable across 

districts in different states, so that the resulting district-level distributions can be used in aggregate-level 

                                                 
1 Our data and methods are more comprehensive than those used in the GRC (Greene & McGee, 2011; Greene & 
Mills, 2014; http://globalreportcard.org/). First, we provide grade-specific estimates (by year), allowing for estimates 
of measures of progress. Second, instead of the statistical model we describe below (Reardon, Shear, Castellano, & 
Ho, 2016), which leverages information from three cut scores in each grade, the GRC uses only one cut score and 
aggregates across grades. This assumes that stringency is the same across grades and that district variances are 
equal. Third, our methods allow us to provide standard errors for our estimates. Fourth, we provide both direct and 
indirect validation checks for our linkages. 

http://globalreportcard.org/
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research. We grant that NAEP and state tests may differ in many respects, including content, testing 

dates, motivation, accommodations for language, accommodations for disabilities, and test-specific 

preparation. While accepting these sources of possible linking error, we focus on the counterfactual 

question that linking asks: How well do our linked district scores from state tests recover the NAEP scores 

that these districts would have received, had their students taken NAEP? In this way, we treat the issue of 

feasibility empirically, by using validation checks to assess the extent to which our methods yield unbiased 

estimates of aggregate parameters of interest.   

 

Data 

We use state accountability test score data and state NAEP data to link scores, and we use NAEP 

TUDA data and NWEA MAP data to evaluate the linkage. Under the EDFacts Initiative (U.S. Department of 

Education, 2015), states report frequencies of students scoring in each of several ordered proficiency 

categories for each tested school, grade, and subject (mathematics and reading/ELA). The numbers of 

ordered proficiency categories vary by state, from 2 to 5, most commonly 4. We use EDFacts data from 

2009 to 2013, in grades 3-8, provided to us by the National Center for Education Statistics under a 

restricted data use license. These data are not suppressed and have no minimum cell size. We also use 

reliability estimates collected from state technical manuals and reports for these same years and grades, 

imputing when they are not reported.2 

Average NAEP scores and their standard deviations are reported for states and participating 

TUDA districts in odd years, in grades 4 and 8, in reading and mathematics. In each state and TUDA 

district, these scores are based on an administration of the NAEP assessments to representative samples 

                                                 
2 From 2009-2012, around 70% of 2,400 state(50)-grade(6)-subject(2)-year(4) reliability coefficients were available. 
Missing reliabilities were imputed as predicted values from a linear regression of reliability on state, grade, subject, 
and year. Reliabilities from 2013, which were not yet available when these data were gathered, were assumed to be 
the same as corresponding reliabilities from 2012. As Reardon and Ho (2015) show, reliabilities are almost always 
within a few hundredths of 0.90, so imputation errors are not likely to be consequential.  
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of students in the relevant grades and years. We use years 2009, 2011, and 2013 as a basis for linking; we 

use additional odd years from 2003 through 2007 as part of some validation analyses. The NAEP state and 

district means and standard deviations, as well as their standard errors, are available from the NAEP Data 

Explorer (U.S. Department of Education, n.d.). To account for NAEP initiatives to expand and standardize 

inclusion of English learners and students with disabilities over this time period, we rely on the Expanded 

Population Estimates (EPE) of means and standard deviations provided by the National Center of 

Education Statistics (see Braun, Zhang, & Vezzu, 2008; McLaughlin, 2005; National Institute of Statistical 

Sciences, 2009).3 

Finally, we use data from the NWEA MAP test that overlap with the years, grades, and subjects 

available in the EDFacts data: 2009-2013, grades 3-8, in reading/ELA and mathematics. Student-level MAP 

test score data (scale scores) were provided to us through a restricted-use data sharing agreement with 

NWEA. Several thousand school districts chose to administer the MAP assessment in some or all years 

and grades that overlap with our EDFacts data. Participation in the NWEA MAP is generally binary in 

districts administering the MAP; that is, in participating districts, either very few students or essentially all 

students are assessed. We exclude cases in any district’s grade, subject, and year, where the ratio of 

assessed students to enrolled students is lower than 0.9 or greater than 1.1. This eliminates districts with 

scattered classroom-level implementation as well as very small districts with accounting anomalies. 

Excluded districts comprise roughly 10% of the districts using the NWEA MAP tests. After these 

exclusions, we estimate district-grade-subject-year means and standard deviations from student-level 

data reported on the continuous MAP scale.  

 

 

                                                 
3 Note that the correlation of EPE and regular NAEP estimates are near unity; as a result, our central substantive 
conclusions are unchanged if we use the regular NAEP estimates in the linking. 
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Linking Methods 

The first step in linking the state test scores to the NAEP scale is to estimate district-level score 

means and standard deviations from the coarsened proficiency count data available in EDFacts. These 

distributions are standardized relative to the state-wide student distribution of scores on the state 

assessment. We do this in each state, separately for each grade, year, and subject, using the methods 

described in detail by Reardon, Shear, Castellano, and Ho (2016).  

In brief, Reardon, Shear, Castellano, and Ho (2016) demonstrate that a heteroskedastic probit 

(HETOP) model can be used to estimate group (district) test score means and standard deviations from 

coarsened data. The HETOP model assumes that there is some monotonic transformation of a state’s test 

scale in which each district’s test score distribution is normal (with a district-specific mean and standard 

deviation) and that the observed ordered proficiency counts in each district are the result of coarsening 

the districts’ normal score distributions using a common set of proficiency thresholds. Given these 

assumptions, the HETOP model provides estimates of each districts’ score mean and standard deviation. 

The resulting estimates are generally unbiased and are only slightly less precise than estimates obtained 

from (uncoarsened) student-level scale score data in typical state and national educational testing 

contexts. We refer readers to their paper (Reardon, Shear, Castellano, & Ho, 2016) for technical specifics. 

Because most states do not report district-level means and standard deviations, the ability to estimate 

these distributional parameters from coarsened proficiency category data is essential, given that such 

categorical data are much more readily available (e.g., EDFacts). Of course, if individual scale score data 

or district-level means and standard deviations were readily available, this step would be unnecessary. 

Fitting the HETOP model to EDFacts data yields estimates of each district’s mean test score, 

where the means are expressed relative to the state’s student-level population mean of 0 and standard 

deviation of 1, within each grade, year, and subject. We denote these estimated district means and 

standard deviations as �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state  and 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state, respectively, for district 𝑑𝑑, year 𝑦𝑦, grade 𝑔𝑔, and subject 𝑏𝑏. The 
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HETOP model estimation procedure also provides standard errors of these estimates, denoted 𝑠𝑠𝑠𝑠��̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state � 

and 𝑠𝑠𝑠𝑠�𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state�, respectively (Reardon, Shear, Castellano, & Ho, 2016).  

The second step of the linking process is to estimate a linear transformation linking each 

state/year/grade/subject scale (standardized to a student-level mean of 0 and standard deviation of 1—

the scale of �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state ) to its corresponding NAEP distribution. Recall that we have estimates of NAEP means 

and standard deviations at the state (denoted 𝑠𝑠) level, denoted �̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep and 𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep, respectively, as well as 

their standard errors. To obtain estimates of these parameters in grades (3, 5, 6, and 7) and years (2010 

and 2012) in which NAEP was not administered, we interpolate and extrapolate linearly. First, within each 

NAEP-tested year, 2009, 2011, and 2013, we interpolate between grades 4 and 8 to grades 5, 6, and 7 

and extrapolate to grade 3. Next, for all grades 3-8, we interpolate between the NAEP-tested years to 

estimate parameters in 2010 and 2012. We illustrate this below for means, and we apply the same 

approach to standard deviations. Note that this is equivalent to interpolating between years first and then 

interpolating and extrapolating to grades. 

�̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �̂�𝜇𝑠𝑠𝑑𝑑4𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑑𝑑−4
4
��̂�𝜇𝑠𝑠𝑑𝑑8𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̂�𝜇𝑠𝑠𝑑𝑑4𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�,     for g ∈ {3, 5, 6, 7}; y ∈ {2009, 2011, 2013}; and ∀ 𝑠𝑠, 𝑏𝑏 

�̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =

1
2
��̂�𝜇𝑠𝑠[𝑑𝑑−1]𝑑𝑑𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + �̂�𝜇𝑠𝑠[𝑑𝑑+1]𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 � ,     for g ∈ {3, 4, 5, 6, 7, 8}; y ∈ {2010,2012}; and ∀ 𝑠𝑠, 𝑏𝑏 

We evaluate the validity of linking to interpolated NAEP grades and years explicitly later in this paper. 

Because the estimated district test score moments �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state  and 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state are already expressed on a 

state scale with mean 0 and unit variance, the estimated mapping of the standardized test scale in state 

𝑠𝑠, year 𝑦𝑦, grade 𝑔𝑔, and subject 𝑏𝑏 to the NAEP scale is given by Equation (2) below, where 𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state is the 

estimated reliability of the state test. Given �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state , this mapping yields an estimate of the of the district 

average performance on the NAEP scale; denoted �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� . Given this mapping, the estimated standard 

deviation, on the NAEP scale, of scores in district 𝑑𝑑, year 𝑦𝑦, grade 𝑔𝑔, and subject 𝑏𝑏 is given by Equation 

(3). 

(1) 
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�̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� = �̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep +
𝜇𝜇�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
state

�𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
state

∗ 𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep 

𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� = �

�𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state�2 + 𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state − 1
𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state �

1/2

∙ 𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep 

The intuition behind Equation (2) is straightforward: districts that belong to states with relatively 

high NAEP averages, �̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep, should be placed higher on the NAEP scale. Within states, districts that are 

high or low relative to their state (positive and negative on the standardized state scale) should be 

relatively high or low on the NAEP scale in proportion to that state’s NAEP standard deviation, 𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep. 

The reliability term, 𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state, in Equations (2) and (3) is necessary to account for measurement 

error in state accountability test scores. Recall that district means and standard deviations on the state 

scale, �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state  and 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state, are expressed in terms of standard deviation units of the state student-level 

observed score distribution. The standardized means are attenuated toward zero due to measurement 

error. They must be disattenuated before being mapped to the NAEP scale, given that the NAEP scale 

accounts for measurement error due to item sampling. We disattenuate the means by dividing them by 

the square root of the state test score reliability estimate, 𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state. The district standard deviations on the 

state scale, 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛, are biased toward 1 due to measurement error; we adjust them before linking them 

to the NAEP scale, as shown in Equation (3). 

From Equations (2) and (3), we can derive the (squared) standard errors of the linked means and 

standard deviations for non-interpolated grades and years. For simplicity in these derivations, we assume 

�̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep and 𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep are independent random variables,4 which yields: 

 

                                                 
4 This is not strictly true, since �̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep and 𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naepare estimated from the same sample. However, the NAEP samples 

are large within each state-year-grade-subject, so the covariance of the estimated means and standard deviations 
will generally be small relative to other sources of sampling variance in Equation (4). 

(2) 
 
 
(3) 
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𝑣𝑣𝑣𝑣𝑣𝑣 ��̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep�  � = 𝑣𝑣𝑣𝑣𝑣𝑣��̂�𝜇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep� +
𝑣𝑣𝑛𝑛𝑣𝑣�𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep�𝑣𝑣𝑛𝑛𝑣𝑣�𝜇𝜇�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
state�

𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
state  

                                            +
�𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep�
2
𝑣𝑣𝑣𝑣𝑣𝑣��̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state �

𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state +
��̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state �2𝑣𝑣𝑣𝑣𝑣𝑣�𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep�

𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state ,  

for g ∈ {4,8} and y ∈ {2009,2011,2013}; 

 

𝑣𝑣𝑣𝑣𝑣𝑣 �𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� � =

�𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state�2 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣�𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state�

𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state ��𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑state�2 + 𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑state − 1�
�𝑣𝑣𝑣𝑣𝑣𝑣�𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

naep�+ �𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep�

2
� 

+𝑣𝑣𝑣𝑣𝑣𝑣�𝜎𝜎�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
naep��

�𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
state�

2
+𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

state−1

𝜌𝜌�𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑
state �,  

for g ∈ {4,8} and y ∈ {2009,2011,2013}. 

 For interpolated grades and years, the sampling variances differ, because interpolated and 

extrapolated values are essentially weighted averages. For example, it follows from Equation (1), and 

assuming uncorrelated terms, that for grades 3, 5, 6, and 7 in odd years the sampling variances of 

interpolated and extrapolated means are: 

𝑣𝑣𝑣𝑣𝑣𝑣 ��̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� � = �

8 − 𝑔𝑔
4

�
2
𝑣𝑣𝑣𝑣𝑣𝑣 ��̂�𝜇𝑑𝑑𝑑𝑑4𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� �+ �
𝑔𝑔 − 4

4
�
2
𝑣𝑣𝑣𝑣𝑣𝑣 ��̂�𝜇𝑑𝑑𝑑𝑑8𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� � , for g ∈ {3, 5, 6, 7} 

 

Validation Checks and Results 

The linking method we use here, on its own, is based on the untested assumption that districts’ 

distributions of scores on the state accountability tests have the same relationship to one another (i.e., 

the same relative means and standard deviations) as they would if the NAEP assessment were 

administered in lieu of the state test. Implicit in this assumption is that differences in the content, format, 

and testing conditions of the state and NAEP tests do not differ in ways that substantially affect aggregate 

relative distributions. This is, on its face, a strong assumption.  

(4) 
 
 
 
 
 
 
 
 
 
 
 
(5) 

(6) 
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Rather than assert that this assumption is valid, we empirically assess it, using the patchwork 

reporting and administration of district results by NAEP and NWEA. We do this in several ways. First, for 

the districts participating in the NAEP TUDA assessments over these years, we compare �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� —the 

estimated district mean based on our linking method—to �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep—the mean of NAEP TUDA scores from 

the district. This provides a direct validation of the linking method, since the TUDA scores are in the 

metric that the linking method attempts to recover but are not themselves used in any way in the linking 

process. We repeat this linkage for demographic subgroups to assess the population invariance of the 

link.  

Second, we assess the correlation of our linked district estimates with district mean scores on the 

NWEA MAP tests. This provides the correlation across a larger sample of districts. However, the NWEA 

MAP test has a different score scale, so it does not provide direct comparability with the NAEP scale that 

is the target of our linking.  

Third, for the 20 relevant TUDA districts, we assess whether within-district differences in linked 

scores across grades and cohorts correspond to those differences observed in the NAEP data. That is, we 

assess whether the linking provides accurate measures of changes in scores across grades and cohorts of 

students, in addition to providing accurate means in a given year.  

Fourth, we conduct a set of validation exercises designed to assess the validity of the 

interpolation of the NAEP scores in non-NAEP years and grades. For all of these analyses, we present 

evidence regarding the district means; corresponding results for the standard deviations are in the 

appendices. 

 

Validation Check 1: Recovery of TUDA means  

The NAEP TUDA data provide estimated means and standard deviations on the actual “naep” 
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scale, �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep  and 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

naep for 17 large urban districts in 2009 and 20 in 2011 and 2013.5  For these particular 

large districts, we can compare the NAEP means and standard deviations to their linked means and 

standard deviations. For each district, we obtain discrepancies  �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� − �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

naep  and 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� − 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

naep. If 

there were no sampling or measurement error in these estimates, we would report the average of these 

discrepancies as the bias, and would report the square root of the average squared discrepancies as the 

Root Mean Squared Error (RMSE). We could also report the observed correlation between the two as a 

measure of how well the linked estimates align linearly with their reported TUDA values. However, 

because of imprecision in both the NAEP TUDA and linked estimates, the RMSE will be inflated and the 

correlation will be attenuated as measures of recovery. Instead, we report measurement-error corrected 

RMSEs and correlations that account for imprecision in both the linked and TUDA parameter estimates.  

To estimate the measurement-error corrected bias, RMSE, and correlation in a given year, grade, and 

subject, we fit the model below, using the sample of districts for which we have both estimates �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep�  

and �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep  (or 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

naep�  and 𝜎𝜎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep as the case may be; the model is the same for the means or standard 

deviations): 

�̂�𝜇𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖) + 𝛼𝛼1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝐷𝐷𝐴𝐴𝑖𝑖) + 𝑠𝑠𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛼𝛼0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛽𝛽00 + 𝑢𝑢0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛼𝛼1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛽𝛽10 + 𝑢𝑢1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝑠𝑠𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑~𝐿𝐿�0,𝜔𝜔𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
2 �;  𝒖𝒖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑~𝑀𝑀𝑀𝑀𝐿𝐿(0, 𝝉𝝉2), 

(7) 

where 𝑖𝑖 indexes source (linked or NAEP TUDA test), 𝜔𝜔𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
2  is the estimated sampling variance of �̂�𝜇𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

                                                 
5 In 2009, the 17 districts are Atlanta, Austin, Baltimore, Boston, Charlotte, Chicago, Cleveland, Detroit, Fresno, 
Houston, Jefferson County, Los Angeles, Miami, Milwaukee, New York City, Philadelphia, and San Diego. 
Albuquerque, Dallas, and Hillsborough County joined in 2011 and 2013. Washington, DC is not included for 
validation, as it has no associated state for linking. California districts (and Texas districts in 2013) did not have a 
common Grade 8 state mathematics assessment, so the California and Texas districts lack a linked district mean for 
Grade 8 mathematics. 
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and 𝝉𝝉2 = �
𝜏𝜏002 𝜏𝜏012

𝜏𝜏012 𝜏𝜏112
� is the variance-covariance matrix of the linked and TUDA parameter values which 

must be estimated. Given the model estimates, we estimate the bias, 𝐵𝐵� = �̂�𝛽00 − �̂�𝛽10, and 𝑅𝑅𝑀𝑀𝑅𝑅𝐿𝐿� =

�𝐵𝐵�2 + 𝐛𝐛𝝉𝝉�2𝐛𝐛′�1/2
 where 𝐛𝐛 = [𝟏𝟏 −𝟏𝟏] is a 1 × 2 design matrix. Finally, we estimate the correlation of 

𝛼𝛼0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝛼𝛼1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 as �̂�𝑣 = 𝜏𝜏�012

𝜏𝜏�00𝜏𝜏�11
.  

Table 1 reports the results of these analyses in each subject, grade, and year in which we have 

TUDA estimates (see Table A1 for the corresponding table for standard deviations). Although we do not 

show the uncorrected estimates here, we note that the measurement error corrections have a negligible 

impact on bias and reduce the (inflated) RMSE by around 8% on average. On average, the linked 

estimates overestimate actual NAEP TUDA means by roughly 1.8 points on the NAEP scale, or around 0.05 

of a standard deviation unit, assuming a NAEP scale standard deviation of 35 (NAEP standard deviations 

vary from roughly 30 to 40 across subjects, years, and grades). The bias is slightly greater in earlier years 

and in mathematics.  
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Table 1: Recovery of NAEP TUDA means following state-level linkage of state test score distributions to 
the NAEP scale, measurement error adjusted. 
 

     Recovery 
Subject Grade Year n   RMSE Bias Correlation 

Reading 

4 
2009 17  3.95 2.12 0.96 
2011 20  3.69 1.25 0.96 
2013 20  2.62 0.20 0.98 

8 
2009 17  2.92 1.12 0.95 
2011 20  2.20 0.63 0.97 
2013 20  3.62 1.67 0.93 

Math 

4 
2009 17  6.09 4.10 0.93 
2011 20  4.97 2.60 0.94 
2013 20  3.60 1.46 0.95 

8 
2009 14  5.21 3.40 0.95 
2011 17  3.77 2.09 0.96 
2013 14   4.54 1.47 0.94 

  2009 14-17  4.70 2.69 0.95 

  2011 17-20  3.79 1.64 0.96 
Average 2013 14-20   3.66 1.20 0.95 

  Reading 17-20  3.23 1.17 0.96 
  Math 14-20   4.77 2.52 0.95 

    All 14-20   4.07 1.84 0.95 
   

     

Subgroup   
Average 

Male 14-20  4.14 1.84 0.97 
Female 14-20  3.95 1.70 0.98 
White 11-19  3.89 0.66 0.98 
Black 13-19  4.11 1.80 0.96 

Hispanic 12-20   4.07 2.08 0.94 
Source: Authors calculations from EDFacts and NAEP TUDA Expanded Population 
Estimates data. RMSE and bias are measured in NAEP scale score points. Estimates are 
based on Equation 7 in text. Subgroup averages are computed from a model that pools 
across grades and years within subject (like Equation 9 in text); the subject averages are 
then pooled within subgroup.  

 

This positive bias indicates that the average scores of students in the TUDA districts are 

systematically higher in the statewide distribution of scores on the state accountability tests than on the 

NAEP test. This leads to a higher-than-expected NAEP mapping. Table 1 also shows that the average 

estimated precision-adjusted correlation (disattenuated to account for the imprecision in the observed 

means) is 0.95 (note that the simple unadjusted correlation is 0.94; measurement error in the means is 
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relatively minor relative to the true variation in the means of the TUDA districts). Figure 1 shows 

scatterplots of the estimated linked means versus the observed TUDA means, separately for grades and 

subjects, with the identity lines displayed as a reference. 

Figure 1 here 

Note that under a linear linking such as Equation 2, our definition of bias implies that the 

weighted average bias, among all districts within each state, and across all states, is 0 by design. If we had 

all districts, the bias in Table 1 would be 0; it is not 0 because Table 1 summarizes the bias for only the 

subset of NAEP urban districts for which we have scores. The RMSE similarly describes the magnitude of 

error (the square root of average squared error) for these districts and may be larger or smaller than the 

RMSE for other districts in the state. 

We review here four possible explanations for discrepancies between a district’s average scores 

on the state accountability test and on the NAEP assessments. First, the population of students assessed 

in the two instances may differ. For example, a positive discrepancy may result if the target district 

excluded low scoring students from state tests but not from NAEP. If this differential exclusion were 

greater in the target district, on average, than in other districts in the state, the target district would 

appear higher in the state test score distribution than it would in the NAEP score distribution, leading to a 

positive discrepancy between the district’s linked mean score and its NAEP mean scores. Likewise, a 

positive discrepancy would result if the NAEP assessments excluded high scoring students more in the 

TUDA assessment than in the statewide assessment, or if there were differential exclusion of high-scoring 

students in other districts on the state test relative to the target district and no differential exclusion on 

NAEP. In other words, the discrepancies might result from a target district’s scores being biased upward 

on the state test or downward on the NAEP assessment relative to other districts in the state, and/or 

from other districts’ scores being biased downward on the state test or upward on the NAEP assessment 

relative to the target district.  
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Second, the discrepancies may result from differential content in NAEP and state tests. If a 

district’s position in the state distribution of skills/knowledge measured by the state test does not match 

its position in the statewide distribution of skills measured by the NAEP assessment, the linked scores will 

not match those on NAEP. The systematic positive discrepancies in Table 1 and Figure 1 may indicate that 

students in the TUDA districts have disproportionately higher true skills in the content areas measured by 

their state tests than the NAEP assessments relative to other districts in the states. In other words, if large 

districts are better than other districts in their states at teaching their students the specific content 

measured by state tests, relative to their effectiveness in teaching the skills measured by NAEP, we would 

see a pattern of positive discrepancies like that in Table 1 and Figure 1.  

Third, relatedly, students in the districts with a positive discrepancy may have relatively high 

motivation for state tests over NAEP, compared to other districts. Fourth, the bias evident in Table 1 and 

Figure 1 may indicate differential score inflation or outright cheating. For example, some of the largest 

positive discrepancies among the 20 TUDA districts illustrated in Figure 1 are in Atlanta in 2009, where 

there was systematic cheating on the state test in 2009 (Wilson, Bowers, & Hyde, 2011). The 

discrepancies in the Atlanta estimates are substantially smaller (commensurate with other large districts) 

in 2011 and 2013, after the cheating had been discovered. In this way, we see that many possible sources 

of bias in the linking are sources of bias with district scores on the state test itself, rather than problems 

with the linking per se. 

We also address the population invariance of the linking (e.g., Kolen & Brennan, 2014; Dorans & 

Holland, 2000) by reporting the average direction and magnitude (RMSE) of discrepancies, �̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep� −

�̂�𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
naep , for selected gender and racial/ethnic subgroups in Table 1. The number of districts is lower in 

some grade-year cells due insufficient subgroup samples in some districts.6 The RMSEs are only slightly 

                                                 
6 Our model for subgroups pools across grades (4 and 8) and years (2009, 2011, and 2013) to compensate for 
smaller numbers of districts in some grade-year cells. We describe this model in Validation Check 3 below. On 
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larger for subgroups than the RMSE for all students, and bias is around the same magnitude, albeit 

smaller for White students than for the other subgroups. We conclude from these comparable values 

that the linking functions recover NAEP district means similarly, on average, across subgroups. 

 

Validation Check 2: Association with NWEA MAP means 

The NWEA MAP test is administered in thousands of school districts across the country. Because 

the MAP tests are scored on the same scale nationwide, district average MAP scores can serve as a 

second audit test against which we can compare the linked scores. As noted previously, in most tested 

districts, the number of student test scores is very close to the district’s enrollment in the same subject, 

grade, and year. For these districts, we estimate means and standard deviations on the scale of the MAP 

test, which we designate “map”. The scale differs from that of NAEP, so absolute discrepancies are not 

interpretable. However, strong correlations between linked district means and standard deviations and 

those on MAP represent convergent evidence that the linking is appropriate.  

We calculate disattenuated correlations between the observed MAP means deviations and both 

the HETOP estimated means (prior to linking them to the NAEP scale) and the linked means from 

Equation 2. The improvement from the correlation of MAP means and HETOP estimates to the  

correlation of MAP means and NAEP-linked estimates is due solely to the move from the “state” to the 

“naep� ” scale, shifting all districts within each state according to NAEP performance.  

Table 2 shows that correlations between the linked district means and MAP district means are 

0.93 on average when adjusting for imprecision (see Table A2 for the corresponding table for standard 

deviations). This is larger than the average correlation of 0.87 between the MAP means and the 

                                                 
average across grades and years, the results are similar to a model that does not use pooling. We also calculate bias 
and RMSE for Asian student populations but do not report them due to small numbers of districts: 5-10 per cell. 
However, bias and RMSE of linked district estimates were higher for Asians, suggesting caution against conducting a 
separate linkage for Asian students. 
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(unlinked) HETOP estimates. Figure 2 shows a bubble plot of district MAP scores on linked scores for 

Grade 4 mathematics in 2009, as an illustration of the data underlying these correlations. Note that the 

points plotted in Figure 2 are means estimated with imprecision. The observed (attenuated) correlations 

are generally .03 to .10 points lower than their disattenuated counterparts. 

Table 2: Precision-adjusted correlations of linked district means with NWEA MAP district means before 
and after state-level linkage of state test score distributions to the NAEP scale. 
 

     Precision-Adjusted Correlations 

Subject Grade Year N   …With HETOP 
Estimates 

…With Linked 
Estimates 

Reading 

4 
2009 1139  0.90 0.95 
2011 1472  0.87 0.93 
2013 1843  0.92 0.95 

8 
2009 959  0.84 0.91 
2011 1273  0.87 0.91 
2013 1597  0.88 0.92 

Math 

4 
2009 1128  0.86 0.93 
2011 1467  0.82 0.90 
2013 1841  0.87 0.93 

8 
2009 970  0.83 0.93 
2011 1279  0.84 0.92 
2013 1545   0.87 0.95 

  2009 4196  0.86 0.93 
Average 2011 5491  0.85 0.91 

    2013 6826   0.88 0.94 
  All Years 16513   0.87 0.93 

Source: Authors’ calculations from EDFacts and NWEA MAP data. NWEA MAP = Northwest 
Evaluation Association Measures of Academic Progress. Sample includes districts with reported 
NWEA MAP scores for at least 90% of students. 

 

Figure 2 here 

 

Validation Check 3: Association of between-grade and -cohort trends 
  
 An additional assessment of the extent to which the linked state district means match the 

corresponding NAEP district means compares not just the means in a given grade and year, but the 

within-district differences in means across grades and years. If the discrepancies evident in Figure 1 are 
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consistent across years and grades within a district, then the linked state estimates will provide accurate 

measures of the within-district trends across years and grades, even when there is a small bias in in the 

average means.  

To assess the accuracy of the across-grade and -year differences in linked mean scores, we use 

data from the grades and years in which we have both linked means and corresponding means from 

NAEP. We do not use the NAEP data from interpolated years and grades in this model. We fit the same 

model for both means and standard deviations, and separately by subject. For each model, we fit 

precision-weighted random coefficients models of this form: 

�̂�𝜇𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖) + 𝛼𝛼1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝐷𝐷𝐴𝐴𝑖𝑖) + 𝑠𝑠𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛼𝛼0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛽𝛽00𝑑𝑑 + 𝛽𝛽01𝑑𝑑�𝑦𝑦𝑠𝑠𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 2011� + 𝛽𝛽02𝑑𝑑�𝑔𝑔𝑣𝑣𝑣𝑣𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 6� + 𝑢𝑢0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛼𝛼1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛽𝛽10𝑑𝑑 + 𝛽𝛽11𝑑𝑑�𝑦𝑦𝑠𝑠𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 2011� + 𝛽𝛽12𝑑𝑑�𝑔𝑔𝑣𝑣𝑣𝑣𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 6� + 𝑢𝑢1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛽𝛽00𝑑𝑑 = 𝛾𝛾00 + 𝑣𝑣00𝑑𝑑 

𝛽𝛽01𝑑𝑑 = 𝛾𝛾01 + 𝑣𝑣01𝑑𝑑 

𝛽𝛽02𝑑𝑑 = 𝛾𝛾02 + 𝑣𝑣02𝑑𝑑 

𝛽𝛽10𝑑𝑑 = 𝛾𝛾10 + 𝑣𝑣10𝑑𝑑 

𝛽𝛽11𝑑𝑑 = 𝛾𝛾11 + 𝑣𝑣11𝑑𝑑 

𝛽𝛽12𝑑𝑑 = 𝛾𝛾12 + 𝑣𝑣12𝑑𝑑 

𝑠𝑠𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑~𝐿𝐿�0,𝜔𝜔𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
2 �;  𝒖𝒖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑~𝑀𝑀𝑀𝑀𝐿𝐿(0,𝝈𝝈2); ;  𝒗𝒗𝑑𝑑~𝑀𝑀𝑀𝑀𝐿𝐿(0, 𝝉𝝉2), 

(8) 

where 𝑖𝑖 indexes source (linked or NAEP TUDA test) and 𝜔𝜔𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
2  is the sampling variance of �̂�𝜇𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (which 

we set equal to the square of its estimated standard error). The vector 𝚪𝚪 = {𝛾𝛾00, … , 𝛾𝛾12} contains the 

average intercepts, year slopes, and grade slopes (in the second subscript, 0, 1, and 2, respectively) for 

the linked values and the target values (in the first subscript, 0 and 1, respectively). The differences 

between the corresponding elements of 𝚪𝚪 indicate average bias (i.e., the difference between 𝛾𝛾00 and 𝛾𝛾10 



    

22 
 

indicates the average deviation of the linked means and the NAEP TUDA means, net of district-specific 

grade and year trends). Unlike Table 1 above, where we estimated bias separately for each year and 

grade and descriptively averaged them, the bias here is estimated by pooling over all years and grades of 

TUDA data, with district random effects. If the linking were perfect, we would expect this to be 0.  

The matrix of random parameters 𝝉𝝉2 includes, on the diagonal, the between-district variances of 

the average district means and their grade and year trends; the off-diagonal elements are their 

covariances. From 𝝉𝝉2 we can compute the correlation between the within-district differences in mean 

scores between grades and years. The correlation 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑣𝑣01𝑑𝑑,𝑣𝑣11𝑑𝑑), for example, describes the 

correlation between the year-to-year trend in district NAEP scores and the trend in the linked scores. 

Likewise the correlation 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑣𝑣02𝑑𝑑 ,𝑣𝑣12𝑑𝑑) describes the correlation between the grade 4-8 differences in 

district NAEP scores and the corresponding difference in the linked scores. Finally, the correlation 

𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑣𝑣00𝑑𝑑 ,𝑣𝑣10𝑑𝑑) describes the correlation between the NAEP and linked intercepts in the model—that 

is, the correlation between linked and TUDA mean scores. This correlation differs from that shown in 

Table 1 above because the former estimates the correlation separately for each grade and year; the 

model in Equation 8 estimates the correlation from a model in which all years and grades are pooled.  

Table 3 shows the results of fitting this model separately by subject to the district means (see 

Table A3 for the corresponding table for standard deviations). When comparing the linked estimates to 

the NAEP TUDA estimates, several patterns are evident. First, the estimated correlation of the TUDA and 

linked intercepts is 0.98 (for both math and reading) and the bias in the means (the difference in the 

estimated intercepts in Table 3) is small and not statistically significant. The linked reading means are, on 

average 1.1 points higher (s.e. of the difference is 3.0; n.s) than the TUDA means; and the linked 

mathematics means are, on average, 2.4 points higher (s.e. of the difference is 3.3, n.s.) than the TUDA 

means. These are, not surprisingly, similar to the average bias estimated from each year and grade 

separately and shown in Table 1. 
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Table 3. Estimated comparison of linked and TUDA district means, pooled across grades and years, by 
subject. 
 

  Reading   Math 
Linked EDFacts Parameters      
   Intercept (γ00) 228.53 ***  250.59 *** 
                          (2.00)   (2.10)  
   Year (γ01) 0.91 ***  0.43 * 

 (0.17)   (0.19)  
   Grade (γ02) 10.81 ***  9.58 *** 
                          (0.27)     (0.29)   
TUDA Parameters      
   Intercept (γ10) 227.41 ***  248.14 *** 
                          (2.12)   (2.49)  
   Year (γ11) 1.03 ***  0.91 *** 

 (0.10)   (0.11)  
   Grade (γ12) 10.84 ***  9.68 *** 
                          (0.22)     (0.17)   

L2 Intercept Variance - Linked (σ0
2) 2.51   2.66  

L2 Intercept Variance - TUDA (σ1
2) 0.82   1.26  

Correlation - L2 Residuals 1.00   0.36  
L3 Intercept Variance - Linked (τ1

2) 8.87   9.27  
L3 Intercept Variance - TUDA (τ4

2) 9.79   11.10  
L3 Year Slope Variance - Linked (τ2

2) --   --  
L3 Year Slope Variance - TUDA (τ5

2) --   --  
L3 Grade Slope Variance - Linked (τ3

2) 1.06   1.03  
L3 Grade Slope Variance - TUDA (τ6

2) 0.93   0.61  
Correlation - L3 Intercepts 0.98   0.98  
Correlation - L3 Year Slopes --   --  
Correlation - L3 Grade Slopes 0.85   0.98  
Reliability L3 Intercept - Linked 0.98   0.98  
Reliability L3 Year Slope - Linked --   --  
Reliability L3 Grade Slope - Linked 0.76   0.73  
Reliability L3 Intercept - TUDA 1.00   1.00  
Reliability L3 Year Slope - TUDA --   --  
Reliability L3 Grade Slope - TUDA 0.87   0.72  
N – Observations 228     204   
N - Districts  20     20   

Source: Authors’ calculations from EDFacts and NAEP TUDA Expanded 
Population Estimates data. Estimates are based on Equation 9 in text. Note: the 
level 3 random errors on the year slope were not statistically significant, and so 
were dropped from the model.  L2 = “Level 2”; L3 = “Level 3”. 

 

Second, the estimated average linked and TUDA grade slopes (𝛾𝛾�02 and 𝛾𝛾�12, respectively) are 
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nearly identical to one another in both math and reading. The estimated bias in grade slopes (-0.04 in 

reading and -0.10 in math) is only 1% as large as the average grade slope. The implied RMSE from the 

model is 0.56 in reading and 0.46 in math, roughly 5% of the average grade slope.7 The estimated 

correlation of the TUDA and linked grade slopes is 0.85 for reading and 0.98 for math. Finally, the 

reliability of the grade slopes of the linked estimates is 0.76 in reading and 0.73 in math.8 Together these 

indicate that the linked estimates provide unbiased estimates of the within-district differences across 

grades, and that these estimates are precise enough to carry meaningful information about between-

grade differences. 

Third, there is little or no variation in the year trends in the TUDA districts; for both math and 

reading, the estimated variation of year trends is small and not statistically significant. As a result, neither 

the TUDA nor the linked estimates provide estimates of trends across years that are sufficiently reliable to 

be useful (in models not shown, we estimate the reliabilities of the TUDA year trends to be 0.28 and 0.53 

and of the linked year trends to be 0.45 and 0.72 in reading and math, respectively). As a result, we 

dropped the random effects on the year trends and do not report in Table 3 estimates of the variance, 

correlation, or reliability of the year trends.  

 

Validation Check 4: Recovery of estimates under interpolation within years 

Using the interpolated state means and standard deviations in Equation (1) for the linking 

establishes an assumption that the linkage recovers district scores that would have been reported in 

years 2010 and 2012 and grades 3, 5, 6, and 7. Although we cannot assess recovery of linkages in 

interpolated grades with only grades 4 and 8, we can check recovery for an interpolated year, specifically, 

2011, between 2009 and 2013. By pretending that we do not have 2011 NAEP state data, we can assess 

                                                 
7 We compute the RMSE of the grade slope from the model estimates as follows. Let �̂�𝐶 = 𝛾𝛾�02 − 𝛾𝛾�12 be the bias in 

the grade slopes; then the RMSE of the grade slope will be: 𝑅𝑅𝑀𝑀𝑅𝑅𝐿𝐿� = ��̂�𝐶2 + 𝐝𝐝𝝉𝝉�2𝐝𝐝′�1/2
, where 𝐝𝐝 = [0 0 1 0 0 − 1]. 

8 The reliability of the level-3 slopes and intercepts is computed as described in Raudenbush and Bryk (2002).  
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performance of our interpolation approach by comparing linked estimates to actual 2011 TUDA results. 

For each of the TUDAs that participated in both 2009 and 2013, we interpolate, for example, 

�̂�𝜇𝑠𝑠2011𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ =

1
2 �
�̂�𝜇𝑠𝑠2009𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + �̂�𝜇𝑠𝑠2013𝑑𝑑𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 � 

𝜎𝜎�𝑠𝑠2011𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ =

1
2 �
𝜎𝜎�𝑠𝑠2009𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜎𝜎�𝑠𝑠2013𝑑𝑑𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 � 

(9) 

Applying Equations 2-5, we obtain estimates, for example, �̂�𝜇𝑑𝑑2011𝑑𝑑𝑑𝑑
naep� ′

, and we compare these to actual 

TUDA estimates from 2011. We estimate bias and RMSE for discrepancies �̂�𝜇𝑑𝑑2011𝑑𝑑𝑑𝑑
naep� ′

− �̂�𝜇𝑑𝑑2011𝑑𝑑𝑑𝑑
naep  using the 

model from Validation Check 1. Table 4 shows results in the same format as Table 1 (see Table A4 for the 

corresponding table for standard deviations). We note that the average RMSE of 3.8 and bias of 1.4 in 

Table 4 are approximately the same as the average RMSE of 3.8 and bias of 1.6 shown for 2011 in Table 1. 

Note that the interpolations we use in our proposed linking are those between observed scores that are 

only two years apart, rather than four years apart as in the validation exercise here. The two-year 

interpolations should be more accurate than the four-year interpolation, which itself is accurate enough 

to show no degradation in our recovery of estimated means. We conclude that the between-year 

interpolation of state NAEP scores adds no appreciable error to the linked estimates for TUDA districts. 

Table 4. Recovery of reported 2011 NAEP TUDA means following state-level linkage of state test score 
distributions to a NAEP scale interpolated between 2009 and 2013, measurement error adjusted. 
 

     Recovery 
Subject Grade Year n   RMSE Bias Correlation 

Reading 
4 2011 20  3.78 0.89 0.95 
8 2011 20  2.14 1.47 0.99 

Math 
4 2011 20  4.67 2.25 0.94 
8 2011 14  3.81 1.66 0.96 

  
      

Average Reading 20  3.07 1.18 0.97 

  Math 14-20   4.26 1.95 0.95 
    All 14-20   3.72 1.57 0.96 

Note: Using NAEP Expanded Population Estimates. Adjusted correlations account for 
imprecision in linked and target estimates. 
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We next investigate the viability of interpolation by comparing correlations of linked district 

estimates with MAP scores at different degrees of interpolation. Some grade-year combinations need no 

interpolation, others are singly interpolated, and others are doubly interpolated. Table 5 shows that, on 

average, precision-adjusted correlations between linked NAEP means and MAP means are almost 

identical across different degrees of interpolation, around 0.93 (see Table A5 for the corresponding table 

for standard deviations). This lends additional evidence that interpolation adds negligible aggregate error 

to recovery.  

Table 5: Precision-adjusted correlations between NWEA MAP district means and NAEP-linked estimates. 
 

Subject Grade   2009 2010 2011 2012 2013 

Reading 

3   0.95 0.94 0.93 0.93 0.94 
4   0.95 0.94 0.93 0.94 0.95 
5   0.94 0.94 0.93 0.93 0.94 
6   0.92 0.94 0.92 0.93 0.93 
7   0.92 0.93 0.92 0.92 0.92 
8   0.91 0.91 0.91 0.91 0.92 

Math 

3   0.91 0.89 0.91 0.91 0.91 
4   0.93 0.92 0.90 0.92 0.93 
5   0.91 0.90 0.92 0.91 0.93 
6   0.93 0.93 0.94 0.93 0.94 
7   0.94 0.95 0.95 0.95 0.95 
8   0.93 0.93 0.92 0.94 0.95 

                
No interpolation   0.93         

Single interpolation   0.93         
Double interpolation   0.93         

Note. Linked using NAEP Expanded Population Estimates. NWEA MAP = Northwest Evaluation 
Association Measures of Academic Progress. Sample includes districts with reported NWEA MAP 
scores for at least 90% of students. 

 

Discussion 

 We present validation methods for aggregate-level linking, motivated by the goal of constructing 

a U.S.-wide district-level dataset of test score means and standard deviations. We demonstrate that test 

score distributions on state standardized tests can be linked to a national NAEP-linked scale in a way that 
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yields district-level distributions that correspond well—but not perfectly—to the absolute performance of 

districts on NAEP and the relative performance of districts on MAP. The correlation of district-level mean 

scores on the NAEP-linked scale with scores on the NAEP TUDA and NWEA MAP assessments is generally 

high (averaging 0.95 and 0.93 across grades, years, and subjects). Nonetheless, we find some evidence 

that NAEP-linked estimates include some small, but systematically positive, bias in large urban districts 

(roughly +0.05 standard deviations, on average). This implies a corresponding small downward bias for 

other districts in the same states, on average.  

Are these discrepancies a threat to the validity of the linked estimates of district means? The 

answer depends on how the estimates will be used. Given evidence of the imperfect correlation and 

small bias, the linked estimates should not be used to compare or rank school districts’ performance 

when the estimated means are close and when the districts are in different states. As we noted, there are 

several possible sources of error in a cross-state comparison, including differences in content, motivation, 

sampling, and inflation. Our methods cannot identify the presence of any one type of error, but do allow 

us to quantify the total amount of error in cross-state comparisons. This error is small relative to the 

distribution of test scores and the variation in average district scores. Of course, relative comparisons 

within states do not depend on the linking procedure, so these are immune to bias and variance that 

arises from the linking methods.  

On the basis of these results, we believe the linked estimates are accurate enough to be used to 

investigate broad patterns in the relationships between average test performance and local community 

or schooling conditions, both within and between states. The validation exercises suggest that the linked 

estimates can be used to examine variation among districts and across grades within districts. It is unclear 

whether the estimates provide unbiased estimates of within-grade trends over time, given that there is 

little or no variation in the NAEP district trends over time against which to benchmark the linked trend 

estimates. This is true more generally even of within-grade national NAEP trends, which are often 
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underpowered to detect true progress over shorter time spans of 2- to 4-years. 

Validation methods must begin with an intended interpretation or use of scores (Kane, 2013). An 

operational interpretation of the linked aggregate estimates is the result of monotonic transformations of 

district score distributions on state tests. They are state score distributions with NAEP-based adjustments, 

with credit given for being in a state with relatively high NAEP performance and, for districts within the 

states, greater discrimination among districts when a state’s NAEP standard deviation is high. Our 

contribution is to provide a strategy and methods for answering the essential couterfactual question: 

What would district results have been, had district scores on NAEP or MAP been available? When 

patchwork administrations of district tests are available, we can obtain direct and indirect answers to this 

question. 

Because the testing conditions, purpose, motivation, and content of NAEP and state tests differ, 

we find that district results do differ across tests. But our validation checks suggest that these differences 

are generally small relative to the variation among districts. This is evident in the high correspondence of 

the linked and NAEP TUDA estimates and of the linked and NWEA MAP estimates. This suggests that our 

set of estimated NAEP-linked district test score results may be useful in empirical research describing and 

analyzing national variation in local academic performance. When data structures with patchwork 

administrations of tests are available in other U.S. and international testing contexts, our strategy and 

methods are a roadmap to not only link scores at the aggregate level but to validate interpretations and 

uses of linked scores. 
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Figure 1. Comparison of reported means from NAEP TUDA and NAEP-linked state test score distributions, 
grades 4 and 8, Reading and Mathematics, in 2009, 2011, and 2013.  
 

Note: DAL = Dallas; ATL = Atlanta; DET = Detroit; BAL = Baltimore; LAN = Los Angeles; CHI = Chicago; HOU = Houston. 
District-years with a greater than 8-point discrepancy are labeled.  
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Figure 2. Example of an association between linked means and NWEA MAP means, grade 4 math, 2009. 
 

  
Note: Correlation of .87; precision-adjusted correlation of .93. Bubble size corresponds to district enrollment. 
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Appendix Tables 
 
Table A1: Recovery of NAEP TUDA standard deviations following state-level linkage of state test score 
distributions to the NAEP scale, measurement error adjusted. 
 

     Recovery 
Subject Grade Year n   RMSE Bias Correlation 

Reading 

4 
2009 17  0.89 -1.31 0.76 
2011 20  2.28 -0.14 0.46 
2013 20  1.07 0.34 0.96 

8 
2009 17  1.84 -1.33 0.88 
2011 20  1.80 -1.00 0.41 
2013 20  1.01 -1.27 0.62 

Math 

4 
2009 17  1.40 -0.09 0.72 
2011 20  1.71 0.83 0.68 
2013 20  1.64 0.99 0.71 

8 
2009 14  2.15 -0.62 0.77 
2011 17  1.86 0.24 0.79 
2013 14   2.49 0.15 0.56 

  2009 14-17  1.64 -0.84 0.78 

  2011 17-20  1.93 -0.02 0.59 
Average 2013 14-20   1.66 0.05 0.71 

  Reading 17-20  1.57 -0.79 0.68 
  Math 14-20   1.91 0.25 0.71 

    All 14-20   1.75 -0.27 0.69 
   

     

Subgroup   
Average 

Male 14-20  1.60 -0.13 0.72 
Female 14-20  1.76 0.05 0.65 
White 11-19  4.43 2.99 0.42 
Black 13-19  1.90 -0.24 0.40 

Hispanic 12-20   2.51 -1.24 0.34 
Source: Authors calculations from EDFacts and NAEP TUDA Expanded Population 
Estimates data. Estimates are based on Equation 7 in text. Subgroup averages are 
computed from a model that pools across grades and years within subject (like Equation 
9 in text); the subject averages are then pooled within subgroup.   
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Table A2: Precision-adjusted correlations of linked district standard deviations with NWEA MAP district 
standard deviations before and after state-level linkage of state test score distributions to the NAEP scale. 
 

     Precision-Adjusted Correlations 

Subject Grade Year n   …With HETOP 
Estimates 

…With Linked 
Estimates 

Reading 

4 
2009 1139  0.52 0.58 
2011 1472  0.55 0.61 
2013 1843  0.59 0.64 

8 
2009 959  0.54 0.57 
2011 1273  0.51 0.58 
2013 1597  0.52 0.51 

Math 

4 
2009 1128  0.65 0.75 
2011 1467  0.58 0.66 
2013 1841  0.63 0.69 

8 
2009 970  0.65 0.70 
2011 1279  0.55 0.62 
2013 1545  0.65 0.70 

    2009 4196   0.59 0.65 
Average 2011 5491  0.55 0.62 

    2013 6826   0.60 0.64 
  All Years 16513   0.58 0.63 

Source: Authors’ calculations from EDFacts and NWEA MAP data. NWEA MAP = Northwest 
Evaluation Association Measures of Academic Progress. Sample includes districts with reported 
NWEA MAP scores for at least 90% of students. 

  



    

36 
 

Table A3. Estimated comparison of linked and TUDA district standard deviations, pooled across grades 
and years, by subject. 
 

  Reading   Math 
Linked EDFacts Parameters      
   Intercept (γ00) 36.21 ***  33.17 *** 
                          (0.42)   (0.35)  
   Year (γ01) 0.18 +  0.39 *** 

 (0.10)   (0.11)  
   Grade (γ02) -0.68 ***  1.66 *** 
                          (0.13)     (0.18)   
TUDA Parameters      
   Intercept (γ10) 36.85 ***  32.75 *** 
                          (0.39)   (0.36)  
   Year (γ11) 0.07   0.17 * 

 (0.10)   (0.08)  
   Grade (γ12) -0.38 **  1.81 *** 
                          (0.13)     (0.14)   

L2 Intercept Variance - Linked (σ0
2) 0.96   1.21  

L2 Intercept Variance - TUDA (σ1
2) 0.74   0.43  

Correlation - L2 Residuals 1.00   1.00  
L3 Intercept Variance - Linked (τ1

2) 1.73   1.30  
L3 Intercept Variance - TUDA (τ4

2) 1.60   1.43  
L3 Year Slope Variance - Linked (τ2

2) --   --  
L3 Year Slope Variance - TUDA (τ5

2) --   --  
L3 Grade Slope Variance - Linked (τ3

2) 0.44   0.67  
L3 Grade Slope Variance - TUDA (τ6

2) 0.46   0.54  
Correlation - L3 Intercepts 0.60   0.70  
Correlation - L3 Year Slopes --   --  
Correlation - L3 Grade Slopes 0.77   0.89  
Reliability L3 Intercept - Linked 0.86   0.76  
Reliability L3 Year Slope - Linked --   --  
Reliability L3 Grade Slope - Linked 0.63   0.77  
Reliability L3 Intercept - TUDA 0.84   0.87  
Reliability L3 Year Slope - TUDA --   --  
Reliability L3 Grade Slope - TUDA 0.63   0.79  
N - Observations 228     204   
N - Districts  20     20   

Source: Authors’ calculations from EDFacts and NAEP TUDA Expanded 
Population Estimates data. Estimates are based on Equation 9 in text. Note: the 
level 3 random errors on the year slope were not statistically significant, and so 
were dropped from the model.  L2 = “Level 2”; L3 = “Level 3”.  
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Table A4. Recovery of reported 2011 NAEP TUDA standard deviations following state-level linkage of state 
test score distributions to a NAEP scale interpolated between 2009 and 2013, measurement error 
adjusted. 
 

     Recovery 
Subject Grade Year n   RMSE Bias Correlation 

Reading 
4 2011 20  2.12 0.39 0.53 
8 2011 20  2.53 -0.70 0.00 

Math 
4 2011 20  2.15 1.43 0.53 
8 2011 14  1.52 0.65 0.93 

  
      

Average Reading 20  2.34 -0.15 0.26 

  Math 14-20   1.86 1.04 0.73 
    All 14-20   2.11 0.44 0.50 

Note: Using NAEP Expanded Population Estimates. Adjusted correlations account for 
imprecision in linked and target estimates. 
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Table A5: Precision-adjusted correlations between NWEA MAP district standard deviations and NAEP-
linked estimates. 
 

Subject Grade   2009 2010 2011 2012 2013 

Reading 

3   0.53 0.57 0.63 0.62 0.61 
4   0.58 0.57 0.61 0.62 0.64 
5   0.61 0.54 0.58 0.64 0.64 
6   0.60 0.58 0.61 0.64 0.57 
7   0.60 0.57 0.56 0.55 0.53 
8   0.57 0.56 0.58 0.52 0.51 

Math 

3   0.71 0.70 0.69 0.67 0.65 
4   0.75 0.77 0.66 0.71 0.69 
5   0.73 0.69 0.73 0.72 0.74 
6   0.73 0.75 0.69 0.71 0.73 
7   0.75 0.65 0.70 0.71 0.70 
8   0.70 0.64 0.62 0.71 0.70 

                
No interpolation   0.63         

Single interpolation   0.58         
Double interpolation   0.64         

Note. Linked using NAEP Expanded Population Estimates. NWEA MAP = Northwest Evaluation Association Measures 
of Academic Progress. Sample includes districts with reported NWEA MAP scores for at least 90% of students. 


