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Using Pooled Heteroskedastic Ordered Probit Models 
to Improve Small-Sample Estimates of Latent Test Score Distributions 

 
Abstract 
 
This paper describes a method for pooling grouped, ordered-categorical data across multiple waves to 

improve small-sample heteroskedastic ordered probit (HETOP) estimates of latent distributional 

parameters. We illustrate the method with aggregate proficiency data reporting the number of students 

in schools or districts scoring in each of a small number of ordered “proficiency” levels. HETOP models 

can be used to estimate means and standard deviations of the underlying (latent) test score distributions, 

but may yield biased or very imprecise estimates when group sample sizes are small. A simulation study 

demonstrates that pooled HETOP models can reduce the bias and sampling error of standard deviation 

estimates when group sample sizes are small. An analysis of real test score data suggests the pooled 

models are likely to improve estimates in applied contexts. 
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 States administer millions of standardized assessments to public school students annually as part 

of their school accountability systems. The results of these assessments are often made publicly available 

only in highly coarsened form, and so are much less useful than they might be. Many states, for example, 

report the number students in a particular school or district scoring in each of a small number of ordered 

performance categories, such as “basic,” “proficient,” or “advanced,” rather than reporting the overall 

mean and standard deviation of students’ scores. These are referred to as “coarsened” test score data 

because they arise from coarsening continuous test scores according to a set of pre-determined cut 

scores. Such data have many widely recognized shortcomings (Ho, 2008; Ho & Reardon, 2012; Holland, 

2002; Jacob, Goddard, & Kim, 2013), but continue to be a primary, and sometimes the only, publicly 

available source of state or district achievement test data. Having access to estimates of the mean and 

standard deviation of test scores can support a wider range of interpretations and analyses, ultimately 

leading to more accurate and useful interpretations about student achievement. 

Reardon et al. (2017) described how heteroskedastic ordered probit (HETOP) models can be used 

to estimate the underlying means and standard deviations of the test score distributions based on 

coarsened test score data via maximum likelihood (ML), thus overcoming some limitations of the 

coarsening. Use of the HETOP model in this context requires that the coarsened scores in each group be 

based on a common test (or other measure) across groups that is coarsened using a common set of cut 

scores. HETOP models can readily be applied to other contexts in which grouped, ordered-categorical 

scores are available and there is a need to summarize or compare the underlying distributions across 

groups. Examples include analyzing the aggregate responses to a Likert-style survey item across groups or 

across time, comparing aggregated Apgar scores (Apgar, 1953) across hospitals or regions, or analyzing 

continuous variables such as income that are reported in ordered categories in aggregate data sources 

such as the census. 
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 The HETOP model described by Reardon et al. (2017) has some important limitations, however. 

When group sample sizes are small, the standard deviation estimates produced by the HETOP model are 

negatively biased and have large sampling variances (Reardon et al., 2017). Sparse data is the primary 

cause of this problem; when some groups have no observations in one or more categories, the coarse 

data provide limited information about the underlying distribution. In some cases finite ML estimates may 

not exist (Agresti, 2013). These sparse data problems can occur frequently, particularly in the context of 

analyzing coarsened test score data, where group sample sizes are often small and the cuts cores used to 

coarsen the original test scores may be asymmetrically located throughout the distribution. 

Researchers have proposed several methods to improve small-sample HETOP estimates. To 

illustrate how these approaches work, consider a case in which a HETOP model is used to estimate, from 

coarsened proficiency data, the distribution of mathematics achievement of third graders in each school 

across an entire state. As described in prior work, the HETOP model requires that all students complete 

the same test and that scores were coarsened using a common set of cut scores across all schools. To 

overcome small-sample problems, Reardon et al. (2017) proposed using models that constrain standard 

deviations to be equal across some or all schools in the sample. These constrained models attempt to 

improve standard deviation estimates for schools with small sample sizes by borrowing information from 

other small schools and estimating a single, common third grade mathematics standard deviation 

parameter for these small schools. In their most extreme form, the constrained models estimate only a 

single standard deviation parameter for all schools, regardless of size. Lockwood et al. (2018) describe 

Bayesian HETOP models that use a form of shrinkage estimators to improve small-sample estimates by 

borrowing information from other schools that are similar on observed covariates. Both of these 

approaches rely on borrowing information across groups (schools, in this case) to improve small-sample 

estimates, which can preclude the study of heterogeneity of within-group variances and rely on the 

potentially unrealistic assumption that the within-group variances are equal. 
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In this paper we propose a generalized version of the HETOP model that can be used to estimate 

multiple latent distributions for each group simultaneously when coarsened data are available from 

multiple measures or time points. Returning to the case of achievement testing, analysts will often have 

access to additional sets of coarsened data for each school based on tests administered in other grades, 

subjects, or years. In this case, we can borrow information from the same school in other grades, years, 

or subjects to improve standard deviation estimates rather than borrowing information from different 

schools within the same grade, year, or subject. The model requires that we estimate the distribution of 

achievement in a given school for each grade, year, and subject simultaneously. As we describe below, 

these models are flexible enough to allow for different tests and cut scores across grades, subjects, and 

years. The intuition behind our approach is that when possible, it is preferable to pool information from 

the same group observed on different occasions rather than to pool information across different groups 

observed on the same occasion. This is partly an empirical question, and we analyze test score data from 

a national database to evaluate the tradeoff between pooling across versus within groups in the context 

of aggregate coarsened test score data. 

 The remainder of the paper is organized as follows. Section 1 provides an explanation of the 

HETOP model in the context of analyzing coarsened test score data, and describes an extension of the 

model to define what we refer to as the pooled HETOP model, which can be used to estimate 

distributions across multiple tests simultaneously. Section 2 presents a Monte Carlo simulation conducted 

to evaluate how well the pooled HETOP model can recover parameters using small sample sizes under a 

variety of conditions, and compares performance to the standard HETOP model and a constrained 

homoskedastic ordered probit model. Section 3 analyzes real test score data to evaluate the plausibility of 

the assumptions imposed by the pooled HETOP model for analyzing coarsened test score data. Section 4 

concludes with a brief discussion. 
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1. Statistical Models 

To formalize discussion of the HETOP model, let there be a set of 𝐺 groups (e.g., schools or 

districts). Students within each group take a test and their scores are coarsened into one of 𝐾 ordered 

proficiency categories. We assume that there is an underlying, normally distributed latent variable 𝑦∗ 

within each group that was coarsened into the set of 𝐾 ordered categories based on a set of 𝐾 − 1 

ordered cut scores denoted 𝑐ଵ, … , 𝑐௄ିଵ, where 𝑐௞ିଵ < 𝑐௞ for all 𝑘. We define 𝑐଴ = −∞ and 𝑐௄ = +∞. 

More formally, we assume that 

 𝑦∗|𝑔~𝑁 ቀ𝜇𝑔, 𝜎𝑔ቁ, ( 1 ) 

where 𝜇௚ and 𝜎௚ are the mean and standard deviation, respectively, in group 𝑔. Let 𝐍 be a 𝐺 by 𝐾 matrix, 

with elements 𝑛௚௞  equal to the number of students in group 𝑔 scoring in category 𝑘. 

We do not observe the values of 𝑦∗, but rather observe the ordered categorical variable 𝑥௜௚, 𝑥 ∈{1, … , 𝐾}, for each student 𝑖 in group 𝑔, where 

 𝑥𝑖𝑔 = 𝑘 if 𝑐𝑘−1 < 𝑦𝑖𝑔∗ ≤ 𝑐𝑘. ( 2 ) 

The model-implied proportion of students in group 𝑔 scoring in category 𝑘 is 

 𝜋𝑔𝑘 = Φ ቆ𝜇𝑔 − 𝑐𝑘−1𝜎𝑔 ቇ − Φ ቆ𝜇𝑔 − 𝑐𝑘𝜎𝑔 ቇ = 𝑃𝑟 ቀ𝑐𝑘−1 < 𝑦𝑖𝑔∗ ≤ 𝑐𝑘ቁ, ( 3 ) 

where Φ(•) is the standard normal cumulative distribution function. This model is also sometimes 

referred to as a heterogeneous choice model (e.g., Alvarez & Brehm, 1995; Keele & Park, 2006; Williams, 

2009), a rational model (McCullagh & Nelder, 1989), or a location-scale model (e.g., Cox, 1995; 

McCullagh, 1980). The use of HETOP models to estimate and interpret the means and standard deviations 

of 𝑦∗ in each group is a generalization of the ML-based estimator of 𝑉, an ordinal method for estimating 

standardized achievement gaps between two groups described by Ho and Reardon (2012). The model can 

also be applied to the context of receiver operating characteristic curves (Dorfman & Alf, 1969; Tosteson 

& Begg, 1988). 
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Following the notation of Reardon et al. (2017), let 𝑛௚௞  be the number of students in group 𝑔 

scoring in category 𝑘 and let 𝐍 be the 𝐺 × 𝐾 matrix of observed 𝑛௚௞  values. The goal is to estimate the 

vectors 𝐌 = ሾ𝜇ଵ, … , 𝜇ீሿ௧, 𝚺 = ሾ𝜎ଵ, … , 𝜎ீሿ௧ and  𝐂 = ሾ 𝑐ଵ, … , 𝑐௄ିଵሿ௧.1 In practice, 𝚪 = ሾ𝛾ଵ, 𝛾ଶ, … , 𝛾ீሿ௧ is 

estimated in place of 𝚺, where 𝛾௚ = ln൫𝜎௚൯. This ensures that the estimates of 𝜎௚ will always be positive. 

Following estimation of 𝚪, we have 𝚺෡ = ൣ𝑒ఊෝభ, … , 𝑒ఊෝಸ൧௧
. This is similar to the regression model with 

heterogeneous variances proposed by Harvey (1976). Reardon et al. (2017) describe how to estimate 

these parameters and their standard errors using ML. The estimation is based on expressing the log-

likelihood function for the data as 

 𝑙(𝐍|𝐌, 𝚺, 𝐂) = 𝐴 + ෍ ෍ 𝑛௚௞ 𝑙𝑛 ቆΦ ቀ𝜇௚ − 𝑐(௞ିଵ)𝑒ఊ೒ ቁ − Φ ቀ𝜇௚ − 𝑐௞𝑒ఊ೒ ቁቇ௄
௞ୀଵ

ீ
௚ୀଵ , ( 4 ) 

where 𝐴 is a constant based on the multinomial distribution. The scale of the 𝑦∗ variable is undefined and 

constraints must be placed on the model parameters to make the model identified. Reardon et al. (2017) 

describe different sets of equivalent constraints that can be used, as well as a process to linearly 

transform the resulting estimates of 𝚳 and 𝚺 to a scale such that the overall mean of 𝑦∗ is 0 and the 

standard deviation is 1 (i.e., 𝑦∗ is in a standardized metric). 

Assumptions and Interpretation of the HETOP Model 

 The primary assumption of the HETOP model is that test score distributions are respectively 

normal (Ho & Haertel, 2006; Ho & Reardon, 2012; Reardon & Ho, 2015). With 𝑦 denoting the test scores 

in their original metric, the scores are said to be respectively normal if there is a monotonic function 𝑓(𝑦) = 𝑦∗ that can transform the original scale scores into the 𝑦∗ metric, in which the within-group 

 
1 In some cases, researchers may know the operational cut scores used to coarsen the original test scores. However, 
because the original test score metric may not be the same as the latent, normal 𝑦∗ metric, these cut scores cannot 
necessarily be used as fixed values when estimating the other model parameters. In cases where researchers 
believe the original scale score metric meets certain normality assumptions, then it would be possible to treat the 
cut scores as fixed values and estimate the remaining parameters relative to those cuts cores. Reardon et al. (2017) 
discuss this issue in greater detail. 
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distributions are all normal. The HETOP model estimates the means and standard deviations of 

achievement expressed in the 𝑦∗ metric, not necessarily the original test score metric. Use of the HETOP 

model also assumes that the same test was administered in all groups and that the scores in all groups 

were coarsened according to a common set of cut scores. 

Analyses of real test score data by Reardon et al. (2017) suggest the respective normality 

assumption is reasonable and likely to be satisfied in practice when analyzing test score data. Simulations 

using similar methods in the two-group case to estimate achievement gaps suggest these methods are 

likely to be robust to violations of respective normality (Ho & Reardon, 2012). Because there may be 

doubts about whether test score scales have meaningful interval properties (Ballou, 2009; Briggs, 2013; 

Domingue, 2014), the choice of a single metric such as 𝑦 can be difficult to justify. The 𝑦∗ metric has the 

additional benefit that it is invariant to monotonic transformations of the original score scale – any 

monotonic transformation to the original score scale (that also transforms the cut scores) will lead to 

identical estimates in the 𝑦∗ metric. The HETOP model parameters are thus ordinal statistics, in the sense 

that they rely only on ordinal information in the original test scores. 

Problems with the HETOP Model 

 Although the HETOP model works well for recovering the means and standard deviations in the 𝑦∗ metric when only 𝐍 is observed, a number of problems can occur when attempting to estimate the 

parameters using ML with small samples. First, for some patterns of sampling zeros in 𝐍, finite ML 

estimates may not exist for all groups. Second, even when there may be sufficient information for the ML 

estimates to be defined in theory, computer algorithms may not converge to a solution or may produce 

unstable estimates with extremely poor precision. Such issues are sometimes referred to as fragile 

identification (Freeman, Keele, Park, Salzman, & Weickert, 2015; Keane, 1992). Third, in cases where the 

ML estimates do exist and software can identify the estimates, the simulations in Reardon et al. (2017) 
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show that there is negative bias and excessive sampling error in standard deviation estimates when group 

sample sizes are small (less than 50) and the cut scores are asymmetrically and/or widely spaced. 

Reardon et al. (2017) considered two possible solutions to these challenges. The first was to fit a 

homoskedastic ordered probit (HOMOP) model that constrains all groups to have a common standard 

deviation. The second was a partially heteroskedastic ordered probit (PHOP) model that estimates a 

single, pooled standard deviation for all groups with sample sizes below a set threshold. The HOMOP 

model makes the potentially unrealistic assumption that all groups have equal standard deviations, 

precluding the study of heterogeneity of within-group variances. The PHOP model allows for the study of 

heterogeneity among some groups, but entails the arbitrary constraint that a subset of groups (here, 

those with sample sizes below some threshold) have a common standard deviation. Lockwood et al. 

(2018) describe a Bayesian model that addresses these challenges by borrowing information from other 

groups and from covariates. As anticipated, the Bayesian model solves the identification and existence 

problems, and reduces sampling error of standard deviation estimates, but at the cost of additional bias 

and the requirement that analysts define or estimate appropriate prior distributions for the latent group 

parameters. 

In the context of recovering achievement test score distributions for schools, each of these 

approaches borrows information from students in other schools taking the same test in the same year, 

because the models are defined assuming that the coarsened data are from a single test administration. 

The HOMOP model borrows information from all schools simultaneously, the PHOP model borrows 

information from other small schools, and the Bayesian model borrows information from schools that are 

similar on some set of covariates. The pooled HETOP model described in the next section estimates the 

distributions of scores in multiple grades, years, or subjects simultaneously and allows one to borrow 

information from students in the same school taking tests in these additional years, grades, and subjects. 

This approach will be preferable, in theory, if borrowing information from the same group provides better 
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estimates than borrowing information from other groups. This could occur, for example, if there is more 

variability in the relative magnitude of parameters across schools (within time points) than within schools 

(across time points). This is an empirical question that we investigate with a national database of real test 

score data, where we find evidence that there is indeed greater variability across schools than within 

schools over time. 

The Pooled HETOP Model 

 When analysts have test score proficiency counts from multiple test administrations across years 

or grades for the same 𝐺 groups, it is possible to pool information within groups across administrations to 

improve the estimates of 𝜎௚. Although there may be very little information with which to estimate a 

group’s mean and standard deviation in a single year or grade, pooling across multiple years or grades of 

data provides additional information with which to estimate the parameters in each group. The model 

described here assumes data from multiple grades are available, but the extension to additional 

dimensions (e.g., years or subjects) is straightforward. In addition, while we focus on using the pooled 

model to improve small-sample standard deviation estimates, the model could also be used to improve 

estimates of other parameters, such as group means. We focus on the standard deviations because prior 

work suggests small-sample standard deviation estimates are more problematic than small-sample mean 

estimates. 

 To define the model, suppose there are coarsened proficiency counts for a set of 𝐺 schools 

across 𝑅 grades. Let 𝑛௥௚௞  be the number of students in group 𝑔 scoring in proficiency category 𝑘 in grade 𝑟, and let 𝑛௥௚ = Σ௞𝑛௥௚௞. The goal is to estimate 𝜇௥௚ and 𝜎௥௚ values for each group in each grade 

simultaneously. If we model the mean and standard deviation parameters with parametric functions of 

grade and group, with 𝜇௥௚ = 𝑓(𝑟, 𝑔) and 𝛾௥௚ = ln൫𝜎௥௚൯ = ℎ(𝑟, 𝑔), the model-implied probability of 

student 𝑖 in group 𝑔 scoring in proficiency category 𝑘 in grade 𝑟 can be written as: 
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𝜋𝑟𝑔𝑘 = Φ ቆ𝑓(𝑟, 𝑔) − 𝑐𝑟𝑘−1𝑒ℎ(𝑟,𝑔) ቇ − Φ ቆ𝑓(𝑟, 𝑔) − 𝑐𝑟𝑘𝑒ℎ(𝑟,𝑔) ቇ 

= 𝑃𝑟൫𝑐௥௞ିଵ < 𝑦௥௚௜∗ ≤ 𝑐௥௞൯. ( 5 ) 

For now we assume there are the same number of cut scores in each grade level (though they do not 

need to be located at the same place in the distribution in each grade), but it is straightforward to relax 

this assumption. We can write the log-likelihood of the model in terms of the parameters in 𝑓( ) and ℎ( ) as 

 𝑙(𝐍|𝒇, 𝒉, 𝐂) = 𝐴 + ෍ ෍ ෍ 𝑛௥௚௞ 𝑙𝑛 ൭Φ ቆ𝑓(𝑟, 𝑔) − 𝑐(௞ିଵ)௥𝑒௛(௥,௚) ቇ − Φ ቆ𝑓(𝑟, 𝑔) − 𝑐௞௥𝑒௛(௥,௚) ቇ൱௄
௞ୀଵ

ீ
௚ୀଵ

ோ
௥ୀଵ . ( 6 ) 

Fitting the HETOP model separately within each grade is equivalent to having fully nonparametric 

functions 𝑓(𝑟, 𝑔) = 𝜇௥௚ and ℎ(𝑟, 𝑔) = 𝛾௥௚. Fitting the HOMOP model separately within each grade, 

which constrains all groups in a given grade to have the same standard deviation, uses ℎ(𝑟, 𝑔) = 𝛾௥. 

Fitting the PHOP model separately within each grade, which constrains all groups with 𝑛௥௚ < 𝑎 to have a 

common standard deviation in a given grade while allowing other groups to have freely estimated 

standard deviations, uses ℎ(𝑟, 𝑔) = 𝛾௥଴𝐷௥௚ + 𝛾௥௚(1 − 𝐷𝑟𝑔), where 𝐷௥௚ = 𝕀ൣ𝑛௥௚ < 𝑎൧ is an indicator 

equal to 1 if 𝑛௥௚ < 𝑎. The HOMOP and PHOP models thus place constraints across groups within the 

same grade. 

We consider two alternative forms for ℎ( ) that leverage information across grades but within 

groups. First, we define a model that estimates a single scale parameter for each group using 

 𝛾௥௚ = ℎ(𝑟, 𝑔) = 𝛾௚. ( 7 ) 

Because this model estimates a single standard deviation parameter per group that is constant across 

grades, we refer to it as a “fully pooled HETOP model.”   

Second, we define a model that estimates the scale parameter for each group with a group-

specific linear function of grade using 
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 𝛾௥௚ = ℎ(𝑟, 𝑔) = 𝛽଴௚ + 𝛽ଵ௚ ∗ 𝑟. ( 8 ) 

We refer to this as the “linear trend pooled HETOP model.” In Equation (8), 𝛽଴௚ is a unique scale 

parameter for each group corresponding to the grade level coded as 0, and 𝛽ଵ௚ is the rate of change in 

this scale parameter across grade levels. These models leverage the across-grade data by placing 

restrictions on the overall structure of the group scale parameters. It is also possible to extend the model 

to have a functional form for the means or to include additional covariates in the model that represent 

other dimensions (such as years) or group variables (such as school characteristics or aggregate student 

demographic information). Including group covariates and a random residual term to the model for a 

single grade leads to the Bayesian Fay-Herriot model described by Lockwood et al. (2018). 

Pooled HETOP Model Identification 

Because the scale of the latent 𝑦∗ is indeterminate, constraints are needed to identify the scale of 

the estimates and to account for the variable cut scores across grades. Let 𝑃௠ be the number of 

parameters used per group to model the means, 𝑃௦ be the number of parameters used per group to 

model the standard deviations, and 𝐾 be the number of categories per grade (again assuming an equal 

number of cut scores in each grade, and assuming that 𝐾 ≥ 3 in each grade). In total the model defines 𝐺(𝑃௠ + 𝑃௦) + 𝑅(𝐾 − 1) total parameters, and requires at least 𝑃௠ + 𝑃௦ constraints on these parameters 

to set the location and the scale of 𝑦∗. The fully pooled HETOP model, for example, uses 𝑅 parameters 

per group to model the means (i.e., a separate mean estimated in each grade), but only one additional 

parameter per group for the standard deviations, and thus requires 𝑅 + 1 constraints. The linear trend 

pooled HETOP model requires 𝑅 + 2 constraints. Fitting the HETOP model separately within each grade 

requires 2𝑅 constraints, to set the location and scale of the estimates in each grade.  

 There are different ways to select constraints that satisfy these requirements and that result in 

statistically equivalent models, where parameters will be linear transformations of one another and the 

model log-likelihoods will be equal. One possibility, for example, would be to fix the first cut score in each 
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grade level to a fixed value (e.g., to 0) and then constrain the second cut score for 𝑃௦ of the grade levels to 

another fixed value (e.g., to 1). In the linear trend pooled HETOP model, another option is to constrain 

the weighted sum of group means to be 0 within each grade, and constrain the weighted sum of the 𝛽଴௚ 

and 𝛽ଵ௚ parameters to be 0 across groups. 

These constraints assume that finite ML estimates exist for each relevant parameter. Certain 

patterns of sampling zeroes can prevent finite ML estimates from existing for some samples, even when 

the model specifications and data structure (e.g., number of grades, number of categories, and number 

of constraints) should, in theory, support model estimation. For example, if all observations in a single 

group are in the highest or lowest category in a given grade, a finite ML estimate will not exist for this 

group mean and hence for the model overall, despite having a sufficient number of grades, categories, 

and constraints to identify the model as described above. This problem arises due to patterns in some 

samples of data rather than due to the specification of the model. In the simulation section we describe 

an adjustment that can be made to sampled frequency counts to ensure the existence of finite ML 

estimates for all samples. Placing additional structure on the model, for example by modeling the group 

means with a linear trend in 𝑓( ), is another potential option for overcoming problems caused by 

sparseness. 

Pooled HETOP Model Assumptions and Standardization 

The HETOP model assumes that the test score distributions are respectively normal within grades 

and years, and that within a given grade all scores were coarsened using the same cut scores. The fully 

pooled and linear trend pooled HETOP models place additional constraints on the relative magnitude of 

group standard deviations, which imply assumptions about the overall structure of group standard 

deviation parameters. To aid with the interpretation of results, once estimates of 𝜇̂௥௚ and 𝜎ො௥௚ =exp൫𝛾ො௥௚൯ have been obtained subject to necessary identification constraints, the estimates can be 

linearly transformed to a standardized within-grade metric in which the overall distribution of 𝑦∗ has a 
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marginal mean of 0 and a marginal standard deviation of 1 within each grade. Parameter estimates and 

standard errors on the within-grade standardized metric can be obtained by applying the formulas 

described in the Appendix of Reardon et al. (2017) to estimates from each grade separately. Letting 𝜇̂௥௚ᇱ  

and ln൫𝜎ො௥௚ᇱ ൯ = 𝛾ො௥௚ᇱ  be the parameter estimates after standardizing within grades, standardization leads to 

the following relationships: 

 
𝜇̂௥௚ᇱ = 𝜇̂௥௚ − 𝜉௥exp(Γ௥)  

ln൫𝜎ො௥௚ᇱ ൯ = 𝛾ො௥௚ᇱ = 𝛾ො௥௚ − Γ୰, ( 9 ) 

where 𝜉௥  is an estimate of the overall mean in grade 𝑟, and exp(Γ௥) is an estimate of the overall standard 

deviation in grade 𝑟, in the metric defined by the constraints used for identification. 

Standardizing estimates within grades makes the assumptions of the pooled HETOP models 

slightly less restrictive. In the fully pooled HETOP model, for example, 𝛾௥௚ = 𝛾௚ is constant across grades, 

but this implies only that the ratio of standard deviations in the standardized metric will be constant 

across grades, not that the standard deviations will be equal in absolute value. The fully pooled HETOP 

model implies that 

 
𝜎௥ଵ௚ᇱ𝜎௥ଶ௚ᇱ = exp൫𝛾௚ − Γ௥భ൯exp൫𝛾௚ − Γ௥మ൯ = exp൫Γ௥మ − Γ௥భ൯ ( 10 ) 

will be constant for any group 𝑔 and fixed pair of grades 𝑟ଵ and 𝑟ଶ. The model also implies that the within-

grade ratio of standard deviations for two groups 𝑔ଵ and 𝑔ଶ will be constant across grade levels, meaning 

that 𝜎௥௚భᇱ /𝜎௥௚మᇱ  will be constant for any choice of 𝑟. This implies that the rank ordering of group standard 

deviations remains constant across grades in the pooled model. 

The linear trend pooled HETOP model instead implies that the ratio of a single group’s 

(standardized) standard deviations across two grades will depend on the group’s slope, distance of the 

grades, and grade-specific standardization constants: 
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𝜎௚௥భᇱ𝜎௚௥మᇱ = exp൫𝛾௚௥భ − Γ𝑟1൯exp൫𝛾௚௥మ − Γ𝑟2൯ = exp൫𝛽଴௚ + 𝛽ଵ௚ ∗ 𝑟1 − Γ𝑟1൯exp൫𝛽଴௚ + 𝛽ଵ௚ ∗ 𝑟2 − Γ𝑟2൯ 
= exp ൬𝛽1𝑔(𝑟ଵ − 𝑟ଶ) + ൫Γ௥మ − Γ௥భ൯൰. ( 11 ) 

The ratio between two different group standard deviations changes by a common factor across grades: 

 

𝜎௥௚భᇱ𝜎௥௚మᇱ = exp൫𝛽଴௚భ + 𝛽ଵ௚భ ∗ 𝑟 − Γ𝑟൯exp൫𝛽଴௚మ + 𝛽ଵ௚మ ∗ 𝑟 − Γ𝑟൯= exp൫ൣ𝛽଴௚భ − 𝛽଴௚మ൧ + ൣ𝛽ଵ௚భ − 𝛽ଵ௚మ൧ ∗ 𝑟൯. ( 12 ) 

Thus, the linear trend pooled HETOP model does not imply that the rank ordering of group standard 

deviations remains constant across grades. Below, we evaluate the plausibility of these assumptions 

about the relative magnitudes of group standard deviations in an empirical dataset. 

2. Simulation 

A Monte Carlo computer simulation was used to investigate the small (i.e., finite) sample 

performance of the fully pooled HETOP model and the linear trend pooled HETOP model (referred to in 

this section as the “trend HETOP” model) relative to the standard HETOP and HOMOP models. Data were 

generated for a set of 25 groups observed across six occasions. This scenario could represent having data 

for 25 schools across six grades, and hence we refer to the occasions as “grades.” The simulation varied 

the true group standard deviation structure (either constant values or following group-specific linear 

trends across grades), group sample size (sizes of 10, 25, 50, 100, or 200), and cut score locations. The cut 

scores used to coarsen the data were placed at either the 20th/50th/80th (mid), 5th/30th/55th (skewed) or 

5th/50th/95th (wide) percentiles of the overall distribution within each grade, or were mixed such that 

scores in the first three grades were coarsened using the mid, skewed, and wide cut scores, respectively, 

with the same pattern for grades four through six. Overall there were (2 group structures) x (5 sample 

size conditions) x (4 cut score conditions) for a total of 40 simulation conditions. We generated and 

analyzed 1000 replications (i.e., samples) in each condition. All simulations and analyses were carried out 
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using Stata 14.2 (StataCorp, 2015), with estimation of the HETOP models conducted using a custom 

program written by the authors and based on the Stata -ml- functions. All simulation code is available 

upon request from the authors. 

Data Generation 

For each group standard deviation structure by sample size condition we began by defining a 

population of 25 groups with fixed mean and standard deviation parameters at each grade level. Defining 

the true group mean and standard deviation parameters began by creating a 5-by-5 grid of 𝛽଴௚ and 𝛽ଵ௚ 

values, where the log standard deviation for group 𝑔 in grade 𝑟 = {0,1, … ,5} is 𝛾௥௚: 

 𝛾𝑟𝑔 = 𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑟. ( 13 ) 

To determine the true values, we first assigned values of 𝜎௚ equal to 0.75, 0.85, 0.95, 1.05 or 1.15 to each 

group, and defined 𝛽଴௚ = ln൫𝜎௚൯. These values were then re-centered such that Σ௚𝛽଴௚ = 0. In the 

constant standard deviation condition, 𝛽ଵ௚ = 0 for all groups. In the linear trend condition, a grid with all 

possible combinations of the five 𝛽଴௚ values and the five 𝛽ଵ௚ values {−0.02, −0.01, 0.0, 0.01, 0.02} was 

defined. These values are based on the data analysis below, in which the standard deviations of grade 

slopes were near 0.01 on average. The mean for each group was randomly sampled (with replacement) 

from the values {−0.6, −0.3, 0.0, 0.3,0.6} within each grade. These group means and standard deviations 

were standardized within each grade so that the marginal mean and standard deviation in each grade 

were 0 and 1, respectively. The standardized values were used to generate the random samples for each 

group in each grade, and are the target of recovery. 

The standardized 𝜎௥௚ and 𝜇௥௚ values varied across grades based on the random assignment of 

group mean values, but produce approximately grid-like structures of group means and standard 

deviations within each grade of data in the standardized metric. The intraclass correlation coefficient 

(ICC) also depends on the randomly selected group parameters, and ranged from 0.1 to 0.2 within grades. 

The coefficient of variation (CV) among standardized group 𝜎௚ values was approximately 0.15 across all 
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conditions. These values are similar to those found in prior analyses with real test score data (e.g., Fahle 

& Reardon, 2018; Hedges & Hedberg, 2007). In each replication of each sample size and standard 

deviation condition, a normally distributed random sample of size 𝑛 (either 10, 25, 50, 100, or 200) was 

generated from each group for each of the grades and was coarsened using each set of cut scores (mid, 

skewed, wide, or mixed).  

Parameter Estimation 

For each of the four coarsened datasets in each condition, we fit the HETOP and HOMOP models 

separately within each grade and fit the fully pooled and trend HETOP models simultaneously to all 

grades. The fully pooled HETOP model was expected to perform best when the data generating model 

specified constant 𝛾௚ values across grades, while the trend HETOP model was anticipated to perform best 

in the linear trend condition. The HETOP model fit separately in each grade is correctly specified given the 

data generation process, but is less parsimonious than the fully pooled or trend models. The HOMOP 

model is incorrectly specified in all conditions. 

We used the following procedure to ensure finite ML estimates exist for all samples. When a 

sampled count vector had only one non-zero count, had non-zero counts in only the top and bottom 

categories, or had non-zero counts in only two adjacent categories, we replaced the sampled counts for 

that group with 

 𝑛ො𝑟𝑔𝑘 = 𝑛𝑟𝑔 ∗ 𝑛𝑟𝑔𝑘 + 𝛼𝑛𝑟𝑔 + 𝐾 ∗ 𝛼, ( 14 ) 

where 𝑛௥௚ = 𝛴௞ୀଵ௄ 𝑛௥௚௞  is the total group sample size for group 𝑔 in grade 𝑟 and 𝛼 = ଵ௄ = ଵସ. This process 

has been referred to as “flattening” (Fienberg & Holland, 1972) or “smoothing” (Simonoff, 1995) the 

observed frequency counts. The degree of smoothing depends upon the choice of 𝛼 and the resulting 

proportions in each cell tend to get flattened towards a uniform distribution. The use of 𝛼 = ଵ௄ was 

suggested by Perks (1947). This method is similar to the common technique of adding a small constant 
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(often 0.5) to cells in sparse contingency tables (Agresti, 2013), but it has the desirable property that it 

leaves the total sample size for each group unaltered. 

Outcomes 

 Evaluation of model performance is based on four outcomes. First, the convergence rate for each 

model was recorded, indicating whether the ML algorithm could reach a solution. We then evaluated the 

bias, root mean squared error (RMSE) and confidence interval (CI) coverage for the estimated group 

means and standard deviations (in the within-grade standardized metric). The bias, RMSE, and CI 

coverage was aggregated across all groups and grades for a particular condition (i.e., it is the average bias 

or pooled RMSE across groups and grades for a given condition). The CI coverage was evaluated by 

determining the proportion of individual estimates for which the estimated parameter value was within 

+/- 1.96 estimated standard errors of the true parameter value. 

 To compare the relative gain in efficiency when using a fully pooled HETOP model rather than 

separate HETOP models in each grade, we conducted one additional analysis. For each replication in the 

equal standard deviation condition, we fit a fully pooled model using only the first two, three, four, or five 

grades of data, in addition to the model using all six grades. We then compared the empirical sampling 

variance of the group standard deviation estimates in these pooled models relative to the separate 

HETOP models fit within each grade. The efficiency ratio between the fully pooled and separate HETOP 

models was defined as the ratio of the average observed sampling variance in the separate HETOP 

models relative to each of the fully pooled HETOP models, computed as: 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 = ∑ 𝑉𝑎𝑟൫𝜎ො௚,ுா்ை௉൯௚ீୀଵ∑ 𝑉𝑎𝑟൫𝜎ො௚,௣௢௢௟௘ௗ൯௚ீୀଵ . ( 15 ) 

This ratio indicates how much smaller the sampling error would be if the group standard deviations 

remain constant and we pool across either two, three, four, five, or six grades rather than using only a 

single grade to estimate standard deviations. A ratio of 1 indicates that sampling error in the separate and 
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pooled models are equal, ratios greater than 1 indicate the separate HETOP model estimates have larger 

sampling error, and ratios less than 1 indicate the pooled model has larger sampling error. A similar 

calculation was also made to compare the efficiency of the trend pooled HETOP model to the separate 

HETOP models. 

Results 

All models converged successfully. Across all conditions, approximately 5% of all sampled vectors 

were smoothed, and these were primarily concentrated in the wide and mixed cut score conditions with 

small sample sizes. In the wide cut score condition with 𝑛 = 10, approximately 41% of vectors were 

smoothed, while in the mixed cut score condition with 𝑛 = 10 approximately 18% were smoothed.  

While smoothing the count vectors ensures existence of ML estimates, it may also lead to positive bias in 

standard deviation estimates by artificially adding variance to the observed count vectors, something we 

discuss below. 

 Group Means. We do not show detailed results for the estimated means here because these 

were not the primary outcome of interest, and because there was little variation in the results across 

models. Average bias in estimated means was indistinguishable from 0 for all conditions. There was very 

little difference in the RMSE of means across models, and sample size was the primary factor influencing 

this outcome. CI coverage was generally good and converged towards the expected rate (95%) as sample 

sizes increased, with the following exceptions: coverage rates became too low for the HOMOP model as 

sample sizes increased in all but the wide cut score conditions, and rates were as low as 90.7% for the 

separate HETOP models with 𝑛 = 10, but were near the nominal rate with 𝑛 ≥ 25. 

Group Standard Deviations. Figures 1 and 2 display the bias and RMSE for estimated standard 

deviations. Each panel displays results for a single cut score by group standard deviation structure 

condition; the x-axis depicts group sample sizes, the y-axis depicts the outcome of interest, and each line 

represents a different model. With 𝑛 = 10 and 𝑛 = 25 there is substantial reduction in bias for the fully 
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pooled, trend and HOMOP models relative to the separate HETOP models for all conditions except the 

wide cut score condition. In the wide cut score condition all models slightly overestimated group standard 

deviations, on average, with very small sample sizes; as noted above this is likely due to the correction 

factor applied to ensure ML existence, which was applied most often in the wide cut score condition. The 

fully pooled and trend models tended to slightly overestimate standard deviation estimates with samples 

of size 𝑛 = 10, but this bias was smaller in magnitude than the negative bias in the separate HETOP 

model estimates and was reduced to near 0 with samples of size 25 or larger. The separate HOMOP 

models produced a small positive bias on average across nearly all conditions. This indicates that the 

single common standard deviation estimated in the HOMOP model was slightly larger than the true 

average within-group standard deviations, and is likely due to the misspecification of the HOMOP model. 

 
Figure 1. Bias in Estimated Standard Deviations by Standard Deviation Structure, Cut Score Type, and 
Sample Size for Each Model. HETOP=heteroskedastic ordered probit model; HOMOP=homoskedastic 
ordered probit model; Pooled=fully pooled HETOP model; Trend=linear trend pooled HETOP model. 
Constant SD and Trend SD refer to different patterns of true group standard deviations described in text. 
The mid, skewed, wide, and mixed headings refer to different cut score locations; mid=symmetric cut 
scores at approximately the 20/50/80 percentiles; skewed=asymmetric cut scores at approximately the 
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5/30/55 percentiles; wide=symmetric cut scores at approximately the 5/50/95 percentiles; mixed=mix of 
mid/skewed/wide cut score locations across grades. 
 

Figure 2, depicting the RMSEs of the estimated standard deviations, is simpler to summarize. The 

separate HETOP models had the largest RMSEs when 𝑛 ≤ 25 across all conditions. The difference was 

substantial for all conditions except the wide cut score condition; again the correction factor used for 

existence appears to have caused this difference. The separate HOMOP models had constant RMSE 

across different sample size conditions, with similar RMSE to the fully pooled model when 𝑛 = 10, but 

larger RMSE than all other models when group sample sizes were greater than 50. The fully pooled and 

trend models always had lower RMSE than the separate HETOP models, and the fully pooled model 

always had lower RMSE than the trend model, although the difference was often slight, particularly with 

large sample sizes. Although the trend model is correctly specified (and has slightly smaller bias on 

average than the fully pooled model), the fully pooled model estimates have smaller RMSE because the 

bias induced by the trends is outweighed by the gain in efficiency. If the data generation condition 

included greater heterogeneity of group-specific trends in the standard deviations, the trend model 

estimates would be expected to have lower RMSE than the fully pooled model estimates. 
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Figure 2. RMSE of Estimated Standard Deviations by Standard Deviation Structure, Cut Score Type, and 
Sample Size for Each Model. HETOP=heteroskedastic ordered probit model; HOMOP=homoskedastic 
ordered probit model; Pooled=fully pooled HETOP model; Trend=linear trend pooled HETOP model. 
Constant SD and Trend SD refer to different patterns of true group standard deviations described in text. 
The mid, skewed, wide, and mixed headings refer to different cut score locations; mid=symmetric cut 
scores at approximately the 20/50/80 percentiles; skewed=asymmetric cut scores at approximately the 
5/30/55 percentiles; wide=symmetric cut scores at approximately the 5/50/95 percentiles; mixed=mix of 
mid/skewed/wide cut score locations across grades. 
  

The CI coverage rates (not presented graphically) followed anticipated patterns. For the separate 

HETOP models, coverage rates were between 92.5% and 97.5% for all conditions when 𝑛 ≥ 100, and 

were too low in small sample size conditions (as low as 86% when 𝑛 = 10) except in the wide cut score 

condition where they were too high (99% when 𝑛 = 10), likely due to the smoothing correction. For the 

trend HETOP model, coverage rates were between 92.5% and 97.5% for all conditions except the wide 

cut score condition when 𝑛 = 10, where they were also too high. The trend HETOP model coverage rates 

were always more accurate than the separate HETOP coverage rates. For the fully pooled HETOP model, 

coverage rates were similar to the trend model for the constant SD condition, but became less accurate 
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as sample sizes increased due to model mis-specification in the trend SD condition (as low as 85% when 𝑛 = 200). Coverage rates for the HOMOP model were too low across all conditions due to model mis-

specification (never higher than 25% in any condition) and were less accurate with larger sample sizes.  

 Figure 3 displays the efficiency ratio of the separate HETOP models relative to the pooled models 

when pooling across varying numbers of grades. Each panel represents a different cut score condition, 

and each line represents the efficiency ratio when pooling across a different number of grades. When 

using only 1 grade, the fully pooled model is equivalent to the separate HETOP models, indicated by the 

efficiency ratio of 1. In general, the efficiency ratios approach a value of 𝑝, the number of datasets being 

pooled, indicating that the mean squared error (MSE) of estimates using the fully pooled model is 

approximately 1/𝑝 times the MSE using the separate HETOP models, a substantial reduction. 

 
Figure 3. Efficiency Ratios between HETOP and Pooled HETOP Models by Cut Score Type, Sample Size, and 
Number of Pooled Grades in the Constant SD Condition. The “p” refers to the number of grades used to 
estimate the fully pooled HETOP model. The mid, skewed, wide, and mixed headings refer to different cut 
score locations; mid=symmetric cut scores at approximately the 20/50/80 percentiles; 
skewed=asymmetric cut scores at approximately the 5/30/55 percentiles; wide=symmetric cut scores at 
approximately the 5/50/95 percentiles; mixed=mix of mid/skewed/wide cut score locations across grades. 
 

The efficiency ratios of the trend model are more complex. The estimated (or predicted) scale 

parameter in the trend model is 𝛾ො𝑟𝑔 = 𝛽෠0𝑔 + 𝛽෠1𝑔𝑟, where 𝑟 is the grade level. To gain intuition about the 
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relative efficiency of the trend model, consider what the sampling variance of a parameter estimate is in a 

standard least squares (LS) regression. In LS, the sampling variance of the prediction is (Casella & Berger, 

2002, pp. 557–558): 

 

𝑉𝑎𝑟൫𝛽መ଴௚ + 𝛽መଵ௚𝑟൯ = 𝑉𝑎𝑟൫𝛽መ଴௚൯ + 𝑟ଶ𝑉𝑎𝑟൫𝛽መଵ௚൯ + 2𝑟𝐶𝑜𝑣൫𝛽መ଴௚, 𝛽መଵ௚൯ 
= 𝜎ଶ ቆ1𝑛 + (𝑟 − 𝑟̅)ଶ𝑆௥௥ ቇ 
= 𝜎ଶ𝑛 ቆ1 + (𝑟 − 𝑟̅)ଶ𝑉𝑎𝑟(𝑟) ቇ, 

( 16 ) 

where 𝜎ଶ is the residual error variance, 𝑛 is the number of observations, 𝑟̅ is the mean of 𝑟, and 𝑆௥௥  is the 

sum of squares of 𝑟. Hence the sampling error depends on the specific value of 𝑟 (grade) being 

considered – it will be 𝜎ଶ/𝑛 at the mean of 𝑟 and become larger as 𝑟 gets further from the mean of 𝑟. If 

we assume that the sampling variance of the scale parameter estimates using the separate HETOP 

models represents 𝜎ଶ, and the sampling variance of the trend model estimates can be approximated by 

the LS result in Equation (16), then the anticipated efficiency ratio of the trend model estimates for a 

model with 𝑝 = 6 grades coded as 𝑟 = 0,1, … ,5 would be approximately 1.91 (for 𝑟 = 0 and 5), 3.39 (for 𝑟 = 1 and 4), and 5.53 (for 𝑟 = 2 and 3). 

Figure 4 plots the observed efficiency ratios of the trend model estimates relative to the separate 

HETOP model estimates for the trend SD condition. Each line plots the efficiency ratio at a single grade 

level. The dashed horizontal lines in each panel represent the anticipated values of 1.91, 3.39, and 5.53. 

The approximations appear to work well for the mid, wide, and skewed cut score conditions, but are less 

accurate for the mixed cut scores condition. In the mixed cut scores condition the sampling variance of 

the separate HETOP estimates varies across grade levels depending upon the distribution of the cut 

scores, resulting in the equivalent of a heteroskedastic error term. These results suggest that the 

efficiency ratio of the trend model can be approximated using results from standard LS regression, 

although when cut score locations vary substantially across grade levels the approximations may be less 
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accurate. Hence, although the trend estimates are more efficient than the separate HETOP estimates, the 

gain in efficiency depends on factors such as the number and coding of the grades and the cut score 

locations. 

 
Figure 4. Efficiency Ratios between HETOP and Trend Pooled HETOP Models by Cut Score Type, Sample 
Size, and Grade in the Trend SD Condition. The “g” represents each of the six possible grade levels. The 
mid, skewed, wide, and mixed headings refer to different cut score locations; mid=symmetric cut scores 
at approximately the 20/50/80 percentiles; skewed=asymmetric cut scores at approximately the 5/30/55 
percentiles; wide=symmetric cut scores at approximately the 5/50/95 percentiles; mixed=mix of 
mid/skewed/wide cut score locations across grades. The mixed cut score condition used mid cut scores 
for grades 0 and 3, skewed cut scores for grades 1 and 4, and wide cut scores for grades 2 and 5. 
 
 Summary. Taken together, these results suggest that the fully pooled and trend HETOP models 

can substantially reduce bias and sampling error of standard deviation estimates relative to fitting 

separate HETOP models, particularly with very small sample sizes. The reduction in bias is smaller with 

larger samples, but gains in efficiency remain at all sample sizes. The fully pooled and trend models also 

had smaller sampling variance than the separate HOMOP models with moderate to large sample sizes. 

Use of the smoothing correction did appear to induce some positive bias in standard deviation estimates, 

as anticipated. The results illustrate that the relative performance of the models depends on many 

factors, including the number of waves (grades) of data available, group sample sizes, cut score locations, 
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and the true values of the standard deviations. The next section analyzes a large national database of real 

test score data to gain insight into the likely distribution of these parameters.  

3. Real Data Analysis 

This section analyzes district-level test score proficiency data from 40 states to evaluate the 

plausibility of the fully pooled and linear trend pooled HETOP model assumptions about the relative 

magnitude of group standard deviations, and to evaluate whether placing constraints within or across 

groups appears preferable. We use publicly available data from the Stanford Education Data Archive 

version 2.1 (SEDA; Reardon et al., 2018). SEDA contains estimated mathematics and English/Language 

Arts (ELA) grade 3-8 test score means and standard deviations for nearly every US public school district in 

the 2008-09 through 2014-15 school years.  

The means and standard deviations in SEDA are estimated by fitting partially constrained HETOP 

models separately in each state, grade, year and subject using aggregate district-level proficiency counts 

obtained from the EDFacts database (EDFacts, 2015). Analyzing patterns in standard deviations estimated 

separately across years and grades allows us to evaluate the plausibility of the additional structure 

assumed by the pooled HETOP models. It also allows us to evaluate whether standard deviations tend to 

vary more within or between districts, which provides a sense for whether the within-group constraints 

used in the pooled HETOP models are likely to provide more accurate estimates than the between-group 

constraints used in the PHOP or HOMOP models.  

We make the following sample restrictions to the SEDA database for the purposes of these 

analyses. First, some states reported proficiency data in only two categories during some years, requiring 

that HOMOP models were fit to these datasets. We drop these observations because all districts within 

that particular state, grade, subject, and year were constrained to have equal standard deviations. 

Second, in cases where data were reported in three or more proficiency categories (the majority of data), 

PHOP models were fit by constraining the logged standard deviation for districts with fewer than 50 
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students to be equal to the average logged standard deviation of all districts with more than 50 students 

in the same state, grade, year, and subject. We therefore drop all district observations with estimates 

based on fewer than 50 students. These restrictions ensure that the remaining standard deviation 

estimates were estimated without constraints. Finally, we drop all states with fewer than 50 districts after 

making the above restrictions. The final sample consists of 620,588 unique standard deviation estimates 

across 40 states and 9,266 unique districts. Each district has between 1 and 42 repeated observations 

(across six grades and seven years) in each subject, with an average of approximately 34 observations per 

district-subject. On average there are 231 districts per subject and state, ranging from 54 to 699.  

Models 

 SEDA contains estimates of 𝜎௥௧௚ᇱ  (standardized within states, grades, years, and subjects) with an 

associated standard error for each district 𝑔 in year 𝑡 and grade 𝑟 in each state and subject. These 

estimates are on a metric such that within each state, subject, year, and grade, the weighted sum of the 

means is 0 and the total student-level variance is equal to 1. If the assumptions of the fully pooled or 

trend models are met for a particular state by subject dataset, then the natural log of these standardized 

district standard deviations should be related to the 𝛾௥௧௚ metric that would be obtained by fitting a fully 

pooled or trend HETOP model as 

 ln൫𝜎௥௧௚ᇱ ൯ = 𝛾௥௧௚ᇱ = 𝛾௥௧௚ + Γ௥௧ = 𝛽଴௚ + 𝛽ଵ௚𝑟 + 𝛽ଶ௚𝑡 + Γ௥௧. ( 17 ) 

This implies that if the fully pooled or trend HETOP model assumptions are valid, the 𝛾௥௧௚ parameters 

should follow a linear function of grade and year, net of grade-year specific fixed effects Γ௥௧. In the case of 

the fully pooled HETOP model with constant 𝛾௚ parameters, 𝛽ଵ௚ = 𝛽ଶ௚ = 0 for all groups, and the 𝛾௥௧௚ 

parameters would be a group-specific constant plus a grade-year specific fixed effect. 

To summarize patterns among the group standard deviations, we fit precision-weighted 

hierarchical linear models (HLM; Raudenbush & Bryk, 2002) for each state-subject dataset, with estimates 
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𝛾ො௥௧௚ᇱ = ln൫𝜎ො௥௧௚ᇱ ൯ as outcomes. The SEDA data contain standard errors of the 𝜎ො௥௧௚ᇱ ’s. We use the delta 

method to estimate the standard error of 𝛾ො௥௧௚ᇱ  as: 

 𝑆𝐸൫𝛾ො௥௧௚ᇱ ൯ = ඨ 1𝜎ො௥௧௚ᇱ ଶ 𝑆𝐸൫𝜎ො௥௧௚ᇱ ൯ଶ = 1𝜎ො௥௧௚ᇱ 𝑆𝐸൫𝜎ො௥௧௚ᇱ ൯. ( 18 ) 

We use the estimated sampling variances of the 𝛾ො௥௧௚ᇱ  values in a variance-known model (Raudenbush & 

Bryk, 2002) that accounts for the sampling error in the estimates. For each state-subject dataset, the 

general form of the model begins with an equation for the estimated 𝛾ො௥௧௚ᇱ  values 

 
𝛾ො௥௧௚ᇱ = 𝛾௥௧௚ᇱ + 𝜖𝑟𝑡𝑔 

𝜖𝑟𝑡𝑔~𝑁൫0, 𝑉෡𝑟𝑡𝑔൯ 
( 19 ) 

where 𝑉෠௥௧௚ is the square of the estimated standard error of 𝛾ො௥௧௚ᇱ . We then fit two models for the 𝛾௥௧௚ᇱ  

values in each state-subject dataset: 

 

Model 1: 𝛾௥௧௚ᇱ  = 𝛽଴௚ + Γ௥௧ + 𝑒௥௧௚, where 𝑒𝑟𝑡𝑔~𝑁(0, 𝜔ଵ2) and 𝑎௚~𝑁(0, 𝜈଴଴); 

 

Model 2: 𝛾௥௧௚ᇱ  = 𝛽0𝑔 + 𝛽ଵ௚𝑟 + 𝛽ଶ௚𝑡 + 𝑒௥௧௚, where 𝑒𝑟𝑡𝑔~𝑁(0, 𝜔ଶ2) and  
቎𝛽଴௚𝛽ଵ௚𝛽2𝑔 ቏ ~𝑀𝑉𝑁 ቌ൥000൩ , 𝚻 = ቎𝜏00𝜏10 𝜏11𝜏20 𝜏21 𝜏22቏ቍ. 

( 20 ) 

The Γ௥௧  are grade by year fixed effects. Grade and year variables were centered at the mean value within 

each state-subject dataset. All models were fit using the software HLM 7 (Raudenbush, Bryk, & Congdon, 

2013). 

Model 1 includes a random intercept for each district and is equivalent to fitting the fully 

pooled HETOP model in each state-subject dataset. In this model, 𝜈଴଴ is the variance between 

districts in 𝛾௥௧௚ values, while 𝜔ଵଶ is the variance within districts across grades and years. Model 2 
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includes random grade and year linear trends for each district and is equivalent to fitting the 

linear trend pooled HETOP model in each state-subject dataset; 𝜔ଶଶ is the unexplained within-

district variance in 𝛾௥௧௚ values and the elements of 𝚻 indicate the variance of district-specific 

intercepts and linear trends.  

We use Model 1 to evaluate whether the fully pooled HETOP model, which borrows information 

from within districts, is preferable to fitting a model that borrows information from across districts, such 

as the HOMOP model that constrains all districts to have equal 𝛾௥௧௚ estimates within in each state, grade, 

year, and subject. Specifically, we use estimates of 𝜈଴଴ and 𝜔ଵଶ, and the ratio 𝜌 = 𝜈̂଴଴/(𝜈̂଴଴ + 𝜔ෝଵଶ) to 

assess whether there is more variability in true 𝛾௥௧௚ values within or between districts. If 𝛾௥௧௚ parameters 

vary more between than within districts, this suggests pooled HETOP models that borrow information 

from within the same district will be preferable to models that borrow information from across districts. 

We then use Model 2 to evaluate whether estimates from the linear trend HETOP model are expected to 

be more accurate than estimates from the fully pooled HETOP model. To do this, we first test whether 

the variance of district-specific linear trends is non-zero using likelihood ratio tests of the null hypotheses 

that 𝜏ଵଵ = 0 and 𝜏ଶଶ = 0. We then calculate the ratio Δଵଶ = 1 − 𝜔ෝଶଶ/𝜔ෝଵଶ, the percent of unexplained, 

within-district variance in 𝛾௥௧௚values that can be explained by adding district-specific linear grade and 

year trends.  

Results 

 Table 1 summarizes results of fitting Models 1 and 2 to each of the 80 state-subject datasets. In 

Model 1, the average variance of 𝛾௥௧௚ between districts within grades and years, 𝜈̂଴଴, was 0.0033 in ELA 

and 0.0049 in Math, while the average variances within districts were 0.0018 and 0.0028 in ELA and 

Math, respectively. On average 65% of the total variance in 𝛾௥௧௚ values in ELA (range 41% to 88%) and 

64% in Math (range 43% to 89%) was between rather than within districts. The ratio was less than 50% in 
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only 7 of the 80 models. This suggests that in nearly all cases the fully pooled HETOP model that places 

constraints within districts (across years and grades) would be preferable to the HOMOP model that 

places constraints across districts (within years and grades). 

 
Table 1. Summary of HLM Model Estimates by Subject. 

 ELA  Math 
Statistic Min Mean Max  Min Mean Max 𝜔ଵଶ 0.0004 0.0018 0.0045  0.0008 0.0028 0.0064 𝜈଴଴ 0.0015 0.0033 0.0058  0.0015 0.0049 0.0103 𝜌 0.4072 0.6519 0.8814  0.4280 0.6374 0.8846 𝜔ଶଶ 0.0000 0.0012 0.0036  0.0005 0.0020 0.0051 𝜏଴଴ 0.0015 0.0033 0.0059  0.0015 0.0049 0.0104 𝜏ଵଵ 0.0000 0.0001 0.0004  0.0001 0.0002 0.0004 𝜏ଶଶ 0.0000 0.0001 0.0002  0.0000 0.0001 0.0002 Δଵଶ 0.1544 0.3463 0.9997  0.2071 0.2935 0.4260 

Note: This table summarizes estimates from Models 1 and 2 estimated in each state-subject dataset. 𝜔ଵଶ = 
residual variance in 𝛾௥௧௚ values in Model 1; 𝜈଴଴ = between-district variance in 𝛾௥௧௚ values in Model 1; 𝜌 =𝜈଴଴/(𝜈଴଴ + 𝜔ଵଶ) is the percent of total variance between rather than within districts; 𝜔ଶଶ = residual 
variance in 𝛾௥௧௚ values in Model 2; 𝜏଴଴ = between-district variance in 𝛾௥௧௚ values in Model 2; 𝜏ଵଵ and 𝜏ଶଶ 
are between-district variances in grade and year trends, respectively; Δଵଶ = (𝜔ଵଶ − 𝜔ଶଶ)/𝜔ଵଶ is the 
percent of unexplained variance in Model 1 that is explained by including linear grade and year trends in 
Model 2. 
 

Turning to Model 2, the variance of year and grade trends was statistically significant in all but 1 

of the 80 state-subject datasets, suggesting that a linear trend pooled HETOP model with district-specific 

grade and year trends would be preferable to a fully pooled model without these trends. Table 1 includes 

results from all 80 Model 2 estimates. Adding the grade and year trends reduced the unexplained 

variability in 𝛾௥௧௚ values by approximately 35% for ELA and 29% for Math, on average, relative to the fully 

pooled HETOP model. This suggests that including district-specific linear trends can account for a 

substantial proportion of variability that is not explained by the fully pooled HETOP model. 

To quantify the anticipated gains in accuracy obtained by fitting one of the pooled HETOP models 

relative to a HOMOP model, note that the sum (𝜈̂଴଴ + 𝜔ෝଵଶ) estimates the anticipated error variance of 
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𝛾௥௧௚ estimates in the HOMOP model fit separately in each state, grade, year, and subject; the term 𝜔ෝଵଶ 

estimates the error variance of fully pooled HETOP model estimates; and 𝜔ෝଶଶ estimates the error variance 

of linear trend pooled HETOP model estimates. If the random components in Models 1 and 2 are 

normally distributed, we would expect approximately 95% of true 𝛾௥௧௚ values to fall within ±1.96 ∙ඥ𝜈̂଴଴ + 𝜔ෝଵଶ of the HOMOP estimates, within ±1.96 ∙ ඥ𝜔ෝଵଶ of the fully pooled HETOP estimates, and 

within ±1.96 ∙ ඥ𝜔ෝଶଶ of the linear trend pooled HETOP estimates. In other words, a district’s true standard 

deviation in a given grade and year should be within the interval exp൫𝛾ො௥௧௚൯ ∙ exp ቀ±1.96ඥ𝜈̂଴଴ + 𝜔ෝଵଶቁ 

when fitting the HOMOP model. Thus, in ELA we anticipate that, on average, standard deviation estimates 

from the HOMOP model will be within a factor of exp ቀ±1.96ඥ𝜈̂଴଴ + 𝜔ෝଵଶቁ = exp(±0.14), or 

approximately ±14% of the true 𝛾௥௧௚ values. For Math, the estimates should be within approximately ±17% of the true values on average. Similar calculations suggest that on average estimates should be 

within approximately ±8% in ELA or ±10% in Math when using the fully pooled HETOP model, and 

within ±7% in ELA or ±9% in Math when using the linear trend pooled HETOP model. These results 

indicate that the linear trend pooled HETOP model will generally produce more accurate estimates of 𝛾௥௧௚ than either the fully pooled HETOP model or HOMOP model. 

Determining whether to use the fully pooled, linear trend, HOMOP or full HETOP model will 

depend on a number of factors, including the group sample sizes, location of the cut scores, average 

value of 𝜎௥௧௚ᇱ , and the true structure of the 𝜎௥௧௚ᇱ  values. Many of these values will be unknown in practice. 

Often, however, the choice for estimating parameters of small groups will be between a HOMOP or PHOP 

model and a fully pooled or linear trend HETOP model. The results of these analyses provide two findings 

relevant for this decision. First, the pooled HETOP models placing constraints within groups (across years 

or grades) are likely to provide more accurate estimates than models that place constraints across groups 

within the same year or grade. Second, the linear trend pooled HETOP model including group-specific 
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linear trends for grades and years explains enough variability in the district scale parameters to be 

preferred to the fully pooled HETOP model without trends. 

4. Discussion 

This paper presented a generalization of the HETOP model described by Reardon et al. (2017) 

that can be used to analyze grouped, ordered-categorical data when there are multiple waves of data 

available for each group. Two specific forms of the model were considered that can improve estimates, 

particularly estimates of standard deviations. These models leverage data across repeated observations 

for the same groups, rather than data across distinct groups at a common time point. The first model, the 

fully pooled HETOP model, leverages the repeated observations by estimating a constant scale parameter 

for each group. The second model, the linear trend pooled HETOP model, is more flexible and allows each 

group’s scale parameter to vary linearly across the datasets. Both models were shown via simulations to 

reduce the bias and RMSE of standard deviation estimates for an underlying continuous variable when 

group sample sizes were very small. The improvements in estimates were largest when the sample sizes 

were smaller than 50 and the marginal frequencies of observations in the ordered categories were highly 

variable (e.g., the “skewed” cut score condition in the simulations). The anticipated reductions in 

sampling error can be approximated based on the number of pooled datasets and the coding of the linear 

predictors used in the trend models. 

The final section of the paper analyzed test score data from 40 states in order to evaluate the 

degree to which the fully pooled and linear trend pooled HETOP models accurately capture the structure 

among group standard deviations observed in real test score data. The results suggest that the trend 

model with grade and year terms provides a reasonable approximation to the observed structure. More 

importantly, the fully pooled and trend models both appear preferable to models placing constraints 

across groups within the same time point, which would often be the alternative choice when analyzing 

data from small groups. 
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This paper also leaves important directions for future work. As with any simulation study, many 

additional factors could have been varied. These factors include additional structures for the standard 

deviations (including structures that do not conform to the linear trends) as well as violations of 

respective normality. Another avenue for additional work revolves around the problems caused by non-

existence of finite ML estimates. Essentially, this is a problem of small samples containing limited 

information about the parameters of interest. In some simulation conditions, for example when sample 

sizes were 𝑛 = 10 for each group and cut scores were widely spaced, a substantial proportion of group 

count vectors needed to be adjusted to guarantee existence of the ML estimates when group means 

were freely estimated. A more complete proof of existence conditions for the ML estimates was not 

provided and would be a useful extension of the results here. It would also be worth testing models that 

place additional constraints (e.g., linear trends) on the estimated means as another method for 

overcoming sparse data problems.  

As mentioned above, Bayesian or random effects models provide an alternative approach to 

addressing existence and small-sample problems, but were beyond the scope of the present 

investigation. These models rely on specifying or estimating prior distributions, rather than attempting to 

estimate each term individually (e.g., Hedeker, Demirtas, & Mermelstein, 2009; Kapur, Li, Blood, & 

Hedeker, 2015). Recent work pursuing a Bayesian HETOP model (Lockwood et al., 2018) is similar to the 

framework described here with an additional random component. However, these Bayesian models have 

not yet been extended to simultaneously model data from multiple measures with potentially varying cut 

scores. While Bayesian approaches can overcome problems with the non-existence of the ML estimates 

and potentially produce estimates with smaller RMSE, they can increase the bias in estimates for 

individual groups, require appropriate specifications or estimates of prior distributions, and as with the 

HOMOP and PHOP models, they have so far relied on constraints across rather than within groups. Under 

certain conditions, including when estimates might be used in secondary analyses, ML estimates may be 
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preferable, and in those cases the models described here are a useful alternative. Pursuing extensions to 

these models that incorporate multiple sets of data would be a useful area for further study. 

Finally, we note that the models described in this paper can be applied to a wide range of 

ordered-categorical data beyond coarsened test scores. The pooled HETOP models described here are 

applicable any time analysts have multiple sets of grouped, ordered-categorical data for a common set of 

groups and wish to estimate distributional parameters of an underlying continuous variable. These data 

could arise from test scores reported only on ordinal scales such as Advanced Placement (AP) scores, 

from responses to Likert survey items, or from continuous variables such as income that are often 

reported in a coarsened form.  
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